In humans, the targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a cell cycle-associated protein, and altered TPX2 expression has been found in various malignancies. However, the contribution of TPX2 expression to astrocytoma progression is unclear. The aim of this study was to investigate TPX2 expression in human astrocytoma samples and cell lines. TPX2 protein expression was detected in the nucleus of astrocytoma tissues by immunohistochemistry and immunofluorescence staining. Real-time PCR and Western blot analysis showed that the expression levels of TPX2 were higher in high-grade astrocytoma tissues and cell lines than that in low-grade astrocytoma tissues and normal cell lines. Immunohistochemical analysis of tumor tissues from 52 patients with astrocytoma showed that TPX2 over-expression was significantly associated with decreased patient survival. In addition, down-regulation of the TPX2 gene by RNA interference inhibited proliferation of U87 cells. TPX2 gene silencing also increased early-stage apoptosis in U87 cells. Western blotting and real-time PCR showed changes in the protein and mRNA expression of Aurora A, Ran, p53, c-Myc and cyclin B1 in U87 cells that had been transfected with pSUPER/TPX2/siRNA. These data suggest that TPX2 expression is associated with the progression of malignant astrocytoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2010.06.060 | DOI Listing |
Front Mol Biosci
December 2024
Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
Background: Cancer stem cells are characterized by self-renewal, clonal tumor initiation capacity, and treatment resistance, which play essential roles in the tumor progression of prostate cancer (PCa). In this study, we aim to explore the features of cancer stemness and characterize the expression of stem cell-related genes for PCa.
Methods: We downloaded RNA-seq data and related clinical information from The Cancer Genome Atlas (TCGA) database.
Naunyn Schmiedebergs Arch Pharmacol
December 2024
Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
Pancreatic cancer (PC) is a highly aggressive malignancy characterized by a dismal prognosis. The present study is designed to elucidate the pivotal role of Xenopus kinesin-like protein 2 (TPX2) as a biomarker with substantial clinical prognostic significance in PC. By conducting a comprehensive analysis of RNA sequencing data and protein expression profiles obtained from multiple databases, we observed a pronounced upregulation of TPX2 expression in PC tissues compared to normal pancreatic tissues.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
Int J Mol Sci
November 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent'ev Avenue 8, 630090 Novosibirsk, Russia.
Respiratory infections caused by RNA viruses are a major contributor to respiratory disease due to their ability to cause annual epidemics with profound public health implications. Influenza A virus (IAV) infection can affect a variety of host signaling pathways that initiate tissue regeneration with hyperplastic and/or dysplastic changes in the lungs. Although these changes are involved in lung recovery after IAV infection, in some cases, they can lead to serious respiratory failure.
View Article and Find Full Text PDFHeliyon
October 2024
State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China.
Objective: Filamin B (FLNB) encodes an actin-binding protein that is known to function as a novel RNA-binding protein involved in cell movement and signal transduction and plays a pivotal role in bone growth. This study aimed to investigate possible FLNB function in the skeletal system by characterizing the effecs of FLNB knockdown in mouse preosteoblast cells.
Methods: Stable FLNB MC3T3-E1 knockdown cells were constructed for RNA-seq and alternative splicing event (ASE) analysis of genes involved in osteoblast differentiation and function that may be regulated by FLNB.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!