Potency variation of small-molecule chymase inhibitors across species.

Biochem Pharmacol

Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, United States.

Published: October 2010

Chymases (EC 3.4.21.39) are mast cell serine proteinases that are variably expressed in different species and, in most cases, display either chymotryptic or elastolytic substrate specificity. Given that chymase inhibitors have emerged as potential therapeutic agents for treating various inflammatory, allergic, and cardiovascular disorders, it is important to understand interspecies differences of the enzymes as well as the behavior of inhibitors with them. We have expressed chymases from humans, macaques, dogs, sheep (MCP2 and MCP3), guinea pigs, and hamsters (HAM1 and HAM2) in baculovirus-infected insect cells. The enzymes were purified and characterized with kinetic constants by using chromogenic substrates. We evaluated in vitro the potency of five nonpeptide inhibitors, originally targeted against human chymase. The inhibitors exhibited remarkable cross-species variation of sensitivity, with the greatest potency observed against human and macaque chymases, with K(i) values ranging from approximately 0.4 to 72nM. Compounds were 10-300-fold less potent, and in some instances ineffective, against chymases from the other species. The X-ray structure of one of the potent phosphinate inhibitors, JNJ-18054478, complexed with human chymase was solved at 1.8A resolution to further understand the binding mode. Subtle variations in the residues in the active site that are already known to influence chymase substrate specificity can also strongly affect the compound potency. The results are discussed in the context of selecting a suitable animal model to study compounds ultimately targeted for human chymase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2010.06.014DOI Listing

Publication Analysis

Top Keywords

chymase inhibitors
12
human chymase
12
substrate specificity
8
targeted human
8
chymase
6
inhibitors
6
potency
4
potency variation
4
variation small-molecule
4
small-molecule chymase
4

Similar Publications

Analysis of kallikrein-related peptidase 7 (KLK7) autolysis reveals novel protease and cytokine substrates.

Biol Chem

December 2024

Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, 94080, USA.

Kallikrein-related peptidase 7 (KLK7) is one of 15 members of the tissue kallikrein family and is primarily expressed in the skin epidermis. The activity of KLK7 is tightly regulated by multiple stages of maturation and reversible inhibition, similar to several other extracellular proteases. In this work, we used protease-specific inhibitors and active site variants to show that KLK7 undergoes autolysis at two separate sites in the 170 and 99 loops (chymotrypsinogen numbering), resulting in a loss of enzymatic activity.

View Article and Find Full Text PDF

Mas-related G protein-coupled receptor b2 (Mrgprb2) binding to its cationic endogenous and exogenous ligands induces mast cell degranulation and promotes inflammation in mice. However, the physiological roles of its human homologue MRGPRX2 remain unclear. Here we aimed to elucidate the mechanisms by which MRGPRX2 regulates vascular permeability, and generated MRGPRX2 knock-in (MRGPRX2-KI) and Mrgprb2 knockout (Mrgprb2-KO) mice.

View Article and Find Full Text PDF

Ixochymostatin, a trypsin inhibitor-like (TIL) protein from Ixodes scapularis, inhibits chymase and impairs vascular permeability.

Int J Biol Macromol

January 2025

Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA. Electronic address:

Ticks obtain a blood meal by lacerating small blood vessels and ingesting the blood that flows to the feeding site, which triggers various host responses. However, ticks face the challenge of wound healing, a process involving hemostasis, inflammation, cell proliferation and migration, and remodeling, hindering blood acquisition. To overcome these obstacles, tick salivary glands produce an array of bioactive molecules.

View Article and Find Full Text PDF

Chymase is a serine-protease produced by mast cells. In the past few decades, its role in fibrotic diseases triggered the search for orally available chymase inhibitors. Aiming at reducing adverse cardiac remodeling after myocardial infarction, our research efforts resulted in the discovery of fulacimstat (BAY 1142524).

View Article and Find Full Text PDF

Introduction: The Janus kinase (JAK) family includes four cytoplasmic tyrosine kinases (JAK1, JAK2, JAK3, and TYK2) constitutively bound to several cytokine receptors. JAKs phosphorylate downstream signal transducers and activators of transcription (STAT). JAK-STAT5 pathways play a critical role in basophil and mast cell activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!