Celastrol, a quinone methide triterpenoid derived from the medicinal plant Tripterygium wilfordii, possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we examined the suppressive effect of celastrol on IFN-gamma-induced expression of ICAM-1 and the molecular mechanism responsible for these activities. We found that celastrol induced mRNA and protein expression of heme oxygenase-1 (HO-1) in the human keratinocyte cell line HaCaT. Treatment of HaCaT cells with tin protoporphyrin IX (SnPP), a specific inhibitor of HO-1, reversed the suppressive effect of celastrol on IFN-gamma-induced protein and mRNA expression of ICAM-1. HO-1 knockdown using small interfering RNA (siRNA) led to reverse inhibition of IFN-gamma-induced up-regulation of ICAM-1 by celastrol. In addition, SnPP reversed suppression of IFN-gamma-induced promoter activity of ICAM-1 by celastrol. Furthermore, blockage of HO-1 activity by SnPP and HO-1 siRNA reversed the inhibitory effect of celastrol on IFN-gamma-induced adhesion of monocytes to keratinocytes. These results suggest that celastrol may exert anti-inflammatory responses by suppressing IFN-gamma-induced expression of ICAM-1 and subsequent monocyte adhesion via expression of HO-1 in the keratinocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2010.06.053 | DOI Listing |
Mater Today Bio
December 2023
Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
Regeneration in the therapeutics of spinal cord injury (SCI) remains a challenge caused by the hyperinflammation microenvironment. Nanomaterials-based treatment strategies for diseases with excellent therapeutic efficacy are actively pursued. Here, we develop biodegradable poly (lactic--glycolic acid) nanoparticles (PLGA) obtained by loading celastrol (pCel) for SCI thrapy.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2011
Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea.
We previously demonstrated that celastrol, a quinone methide triterpenoid derived from the medicinal plant Tripterygium wilfordii, exerts its anti-inflammatory activity through up-regulation of heme oxygenase-1 (HO-1) expression in the keratinocytes. In this study, we examined the signaling pathways that lead to the up-regulation of HO-1 expression by celastrol. In HaCaT cells, celastrol-induced HO-1 expression was dependent on ROS generation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2010
Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea.
Celastrol, a quinone methide triterpenoid derived from the medicinal plant Tripterygium wilfordii, possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we examined the suppressive effect of celastrol on IFN-gamma-induced expression of ICAM-1 and the molecular mechanism responsible for these activities. We found that celastrol induced mRNA and protein expression of heme oxygenase-1 (HO-1) in the human keratinocyte cell line HaCaT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!