Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polyspecific antibodies represent a significant fraction of the antibody repertoires in healthy animals and humans. Interestingly, certain antibodies only acquire a polyspecific antigen-binding behavior after exposure to protein-modifying conditions, such as those found at inflammation sites, or used in small- and large-scale immunoglobulin purification. This phenomenon is referred to as "criptic polyspecificity". In the present study, we compare the potential of different chemical agents to induce IgG polyspecificity. Depending on the treatment used, quantitative and qualitative differences in the recognition of individual antigens from a standard panel were observed. Antibodies with cryptic polyspecificity utilized common mechanisms for the recognition of structurally unrelated antigens when exposed to a particular inductor of polyspecificity. Our study contributes to the understanding of the mechanisms underlying the cryptic polyspecificity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2010.06.073 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!