The present study examines the contribution of combined sewer overflows (CSO) to loads and concentrations of trace contaminants in receiving surface water. A simple method to assess the ratio of CSO to wastewater treatment plant (WWTP) effluents was applied to the urban River Spree in Berlin, Germany. The assessment indicated that annual loads are dominated by CSO for substances with removal in WWTP above approximately 95%. Moreover, it showed that substances with high removal in WWTP can lead to concentration peaks in the river during CSO events. The calculated results could be verified based on eight years of monitoring data from the River Spree, collected between 2000 and 2007. Substances that are well removed in WWTP such as NTA (nitrilotriacetic acid) were found to occur in significantly increased concentration during CSO, while the concentration of substances that are poorly removable in WWTP such as EDTA (ethylenediaminetetraacetic acid) decreased in CSO-influenced samples due to dilution effects. The overall results indicate the potential importance of the CSO pathway of well-removable sewage-based trace contaminants to rivers. In particular, high concentrations during CSO events may be relevant for aquatic organisms. Given the results, it is suggested to include well-removable, sewage-based trace contaminants, a substance group often neglected in the past, in future studies on urban rivers in case of combined sewer systems. The presented methodology is suggested for a first assessment, since it is based solely on urban drainage data, which is available in most cities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2010.06.011DOI Listing

Publication Analysis

Top Keywords

combined sewer
12
trace contaminants
12
contribution combined
8
sewer overflows
8
river spree
8
removal wwtp
8
cso events
8
well-removable sewage-based
8
sewage-based trace
8
cso
7

Similar Publications

With the beginning of the COVID-19 pandemic, wastewater-based epidemiology (WBE), which according to Larsen et al. (2021), describes the science of linking pathogens and chemicals found in wastewater to population-level health, received an enormous boost worldwide. The basic procedure in WBE is to analyse pathogen concentrations and to relate these measurements to cases from clinical data.

View Article and Find Full Text PDF

Although the paper industry processes polymeric materials and discharges large amounts of wastewater, no research on microplastics in the wastewater from paper mills has been published to date. This study is the first to investigate this issue. The wastewater treatment plants of twelve representatively selected German paper mills were investigated using an analysis protocol based on µ-Raman spectroscopy.

View Article and Find Full Text PDF

Due to accelerating climate change and the need for new development to accommodate population growth, adaptation of urban drainage systems has become a pressing issue in cities. Questions arise whether decentralised urban drainage systems are a better alternative to centralised systems, and whether Nature Based Solutions' (NBS) multifunctionality also brings economic benefits. This research aims to develop spatio-economic scenarios to support cities in increasing their resilience to urban flooding with NBS.

View Article and Find Full Text PDF

Wastewater-based monitoring of antipyretics use during COVID-19 outbreak in China and its associated ecological risks.

Environ Res

December 2024

Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, PR China. Electronic address:

At the end of 2022, a sudden policy shift in China triggered an unprecedented COVID-19 outbreak that led to a dramatic increase in the consumption of antipyretics. In this study, the occurrence of the two most commonly used antipyretics (ibuprofen and paracetamol) and their metabolites were analyzed in the wastewater of nine major cities in China, covering the periods before, during, and after the policy change. The remarkable surge after the policy change for ibuprofen and paracetamol reached 67 times (in Nanning) and 311 times (in Lanzhou) compared to pre-pandemic levels, respectively.

View Article and Find Full Text PDF

Antimicrobial risk assessment-Aggregating aquatic chemical and resistome emissions.

Water Res

December 2024

Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA27AY, UK; SWING - Department of Built Environment, Oslo Metropolitan Uni., St Olavs Plass, Oslo 0130, Norway. Electronic address:

Urban water systems receive and emit antimicrobial chemicals, resistant bacterial strains, and resistance genes (ARGs), thus representing "antimicrobial hotspots". Currently, regional environmental risk assessment (ERA) is carried out using drug consumption data and threshold concentrations derived based on chemical-specific minimum inhibitory concentration values. A legislative proposal by the European Commission released in 2022 addresses the need to include selected ARGs besides the chemical concentration-based ERAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!