A simple method for the separation and determination of inorganic arsenic (iAs) species in natural and drinking water was developed. Procedures for sample preparation, separation of As(III) and As(V) species and preconcentration of the total iAs on fixed bed columns were defined. Two resins, a strong base anion exchange (SBAE) resin and a hybrid (HY) resin were utilized. The inductively-coupled plasma-mass spectrometry method was applied as the analytical method for the determination of the arsenic concentration in water. The governing factors for the ion exchange/sorption of arsenic on resins in a batch and a fixed bed flow system were analyzed and compared. Acidity of the water, which plays an important role in the control of the ionic or molecular forms of arsenic species, was beneficial for the separation; by adjusting the pH values to less than 8.00, the SBAE resin separated As(V) from As(III) in water by retaining As(V) and allowing As(III) to pass through. The sorption activity of the hydrated iron oxide particles integrated into the HY resin was beneficial for bonding of all iAs species over a wide range of pH values from 5.00 to 11.00. The resin capacities were calculated according to the breakthrough points in a fixed bed flow system. At pH 7.50, the SBAE resin bound more than 370 microg g(-1) of As(V) while the HY resin bound more than 4150 microg g(-1) of As(III) and more than 3500 microg g(-1) of As(V). The high capacities and selectivity of the resins were considered as advantageous for the development and application of two procedures, one for the separation and determination of As(III) (with SBAE) and the other for the preconcentration and determination of the total arsenic (with HY resin). Methods were established through basic analytical procedures (with external standards, certified reference materials and the standard addition method) and by the parallel analysis of some samples using the atomic absorption spectrometry-hydride generation technique. The analytical properties of both procedures were similar: the limit of detection was 0.24 microg L(-1), the limit of quantification was 0.80 microg L(-1) and the relative standard deviations for samples with a content of arsenic from 10.00 to 300.0 microg L(-1) ranged from 1.1 to 5.8%. The interference effects of anions commonly found in water and some organic species which can be present in water were found to be negligible. Verification with certified reference materials proved that the experimental concentrations found for model solutions and real samples were in agreement with the certified values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2010.05.027 | DOI Listing |
Heliyon
January 2025
IFP Energies nouvelles, 1 et 4 avenue de Bois Préau, 92852, Rueil-Malmaison, France.
Advanced Adiabatic Compressed Air Energy Storage (AACAES) is a technology for storing energy in thermomechanical form. This technology involves several equipment such as compressors, turbines, heat storage capacities, air coolers, caverns, etc. During charging or discharging, the heat storage and especially the cavern will induce transient behavior of operating points, notably temperature, pressure, and volume flow.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Professor Aroon Sorathesn Center of Excellence in Environmental Engineering, Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand. Electronic address:
Microplastics (MPs) pose significant risks to aquatic life and human health. Conventional water treatment is ineffective in removing MPs, demanding alternative technologies. Biochar exhibits a potential for removing MPs through adsorption and filtration.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Institute of Chemical Technology - Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam.
This study demonstrated a novel approach to accurately estimate 5-day biochemical oxygen demand (BOD) in textile wastewater using a microbial consortium from food processing wastewater fixed on coconut fibers. Although glucose-glutamic acid (GGA) has been widely known as the most preferred substrates for microbial respiration, its calibration surprisingly resulted in an overestimation of BOD in textile wastewater due to its lower utilization rate compared to that of textile wastewater. After being adapted with a new nutrient environment composed of GGA and textile wastewater, the adapted packed-bed bioreactors (PBBRs) was capable of accurate estimation of BOD in textile wastewater using GGA standard solution.
View Article and Find Full Text PDFSurg Innov
January 2025
Department of Neurosurgery, Istanbul University, Faculty of Medicine, Istanbul, Turkey.
Objective: The endoscopic transsphenoidal approach is commonly used for sellar and suprasellar pathologies. However, reaching above the diaphragma sella, especially for posterosuperior and retrocavernous orientation, still poses some challenges. We designed and developed a steerable tip suction cannula (STSC) that has distinct leverage for endoscopic resection of such pathologies.
View Article and Find Full Text PDFSurg Obes Relat Dis
December 2024
Medtronic, PLC, Minneapolis, Minnesota.
Background: Robotic bariatric surgery adoption rates have increased, and the higher costs associated with robotic sleeve gastrectomy (rSG) are a concern.
Objectives: To investigate the factors associated with increased costs of rSG.
Setting: US hospital database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!