Mutations in the Cu/Zn superoxide dismutase (SOD1), transactive response (TAR)-DNA binding protein (TARDBP) and fused in sarcoma (FUS) genes account for approximately 1 third of familial amyotrophic lateral sclerosis (ALS) cases. Mutations in these genes have been found in 1% to 2% of apparently sporadic cases. We present the first case of an ALS patient carrying a de novo missense mutation of the FUS gene (c.1561C>T, p.R521C). This report highlights the importance of screening ALS patients, both familial and sporadic, for FUS mutations and also suggests that de novo mutations is a relevant mechanism underlying sporadic neurodegenerative disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2972379PMC
http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.016DOI Listing

Publication Analysis

Top Keywords

novo missense
8
missense mutation
8
mutation fus
8
fus gene
8
fus
4
gene "true"
4
sporadic
4
"true" sporadic
4
als
4
sporadic als
4

Similar Publications

Background: Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of brain disorders. Variants in the Rho-related BTB domain-containing 2 gene (RHOBTB2) can lead to DEE64, which is characterized by early-onset epilepsy, varying degrees of motor developmental delay and intellectual disability, microcephaly, and movement disorders. More than half of the variants are located at Arg483 and Arg511 within the BTB domain; however, the underlying mechanism of action of these hotspot variants remains unexplored.

View Article and Find Full Text PDF

Background: Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder. Although individuals with variants in the SMC1A gene are less commonly seen in CdLS, they exhibit a high incidence of epilepsy and atypical phenotypic variability.

Methods: The clinical data of a patient with non-classic CdLS and epilepsy caused by an SMC1A variant were summarized.

View Article and Find Full Text PDF

Naa15 Haploinsufficiency and De Novo Missense Variants Associate With Neurodevelopmental Disorders and Interfere With Neurogenesis and Neuron Development.

Autism Res

January 2025

Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China.

Neurodevelopmental disorders (NDDs) encompass a group of conditions that impact brain development and function, exhibiting significant genetic and clinical heterogeneity. NAA15, the auxiliary subunit of the N-terminal acetyltransferase complex, has garnered attention due to its association with NDDs. However, the precise role of NAA15 in cortical development and its contribution to NDDs remain elusive.

View Article and Find Full Text PDF

Discovery of a DNA methylation profile in individuals with Sifrim-Hitz-Weiss syndrome.

Am J Hum Genet

January 2025

Genetics Institute, Rambam Health Care Campus, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel. Electronic address:

Pathogenic heterozygous variants in CHD4 cause Sifrim-Hitz-Weiss syndrome, a neurodevelopmental disorder associated with brain anomalies, heart defects, macrocephaly, hypogonadism, and additional features with variable expressivity. Most individuals have non-recurrent missense variants, complicating variant interpretation. A few were reported with truncating variants, and their role in disease is unclear.

View Article and Find Full Text PDF

Hypoparathyroidism (hypoPTH), sensorineural deafness, and renal dysplasia (HDR) syndrome is a rare autosomal dominant condition with approximately 200 cases published. HDR syndrome is caused by variants of GATA binding protein 3 gene (), which encodes a transcription factor, with multiple types of variants reported. We present the case of a 76-year-old woman who was diagnosed with hypoPTH when she was aged 40 years and transferred care to our institution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!