Doxorubicin (DOX) is an effective chemotherapeutic against a wide range of solid tumors. However, its clinical use is limited by severe side effects such as cardiotoxicity as well as inherent and acquired drug resistance of tumors. DOX encapsulation within self-assembled polymeric micelles has the potential to decrease the systemic distribution of free drug and enhance the drug accumulation in the tumor via the enhanced permeability and retention (EPR). In this study, DOX was encapsulated in micelles composed of poly (ethylene oxide)-poly [(R)-3-hydroxybutyrate]-poly (ethylene oxide) (PEO-PHB-PEO) triblock copolymers. Micelle size, DOX loading and DOX release were characterized. To evaluate DOX activity, micelles were tested in both monolayer cell cultures and three-dimensional (3-D) multicellular spheroids (MCS) that mimic solid tumors. Antitumor activity in vivo was further studied with tumor-bearing mice. The micelles improved the efficiency of Dox penetration in 3-D MCS compared with free DOX. Efficient cell killing by Dox-micelles in both monolayer cells and 3-D MCS was also demonstrated. Finally, DOX-loaded micelles mediate efficient tumor delivery from tail vein injections to tumor-bearing mice with much less toxicity compared with free DOX.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2010.06.004 | DOI Listing |
Eur J Pharm Sci
January 2025
Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
Premature drug release is the primary hindrance to the effective function of the lyso-thermosensitive liposomes (LTSLs) of doxorubicin (Dox), known as ThermoDox® for the treatment of cancer. Herein, we have optimized LTSLs by using a combination of phospholipids (PLs) with high transition temperatures (Tm) to improve the therapeutic outcome in an assisted ultrasound approach. For this, several Dox LTSLs were prepared using the remote loading method at varying molar ratios (0 to 90%) of DPPC (Tm 41°C) and HSPC (Tm 54.
View Article and Find Full Text PDFJ Inorg Biochem
January 2025
College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China. Electronic address:
Developing multifunctional nanomedicines represents a frontier. We have engineered a high-capacity DNA vector basing rolling circle amplification for the delivery of copper sulfide nanoparticles (CuS NPs) and doxorubicin (DOX), coupled with multivalent aptamers (MA) that precisely target tumors, culminating in a multifunctional nanoplatform (RMALCu@DOX), which combines the chemotherapy (CT)/photothermal therapy (PTT)/chemodynamic therapy (CDT). The vector (RMAL) boasts exceptional biocompatibility and incorporates multiple copy units, enabling the precise loading of numerous CuS NPs, forming RMALCu which possesses a robust photothermal effect and superior Fenton-like catalytic activity, heralding a project of minimally invasive dual-mode (PTT/CDT) therapy.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo 05403-900, Brazil.
Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into various lineages. They have also the potential to protect themselves against harmful stimuli to maintain their functional integrity. Drug resistance-related transporters such as ABCB1 (P-glycoprotein; P-gp), ABCC1 (MRP1; multidrug resistance-related Protein 1), and LRP (lung resistance protein) may protect MSCs against toxic substances such as chemotherapeutic agents.
View Article and Find Full Text PDFBiomedicines
January 2025
Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland.
: Anthracyclines remain a pivotal element of numerous tumor management regimens; however, their utilization is associated with a range of adverse effects, the most significant of which is cardiotoxicity. Research is constantly being conducted to identify substances that could be incorporated into ongoing cancer chemotherapy to mitigate anthracycline-induced cardiotoxicity. Recently, the apelinergic system has received a lot of attention in this field due to its involvement in cardiovascular regulation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China. Electronic address:
Chemotherapy serves as the primary treatment for cancers, facing obstacles due to the rise of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from inadequate targeting of cancer cells and low accumulation at the tumor location. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!