In Brazil, polysaccharide-protein conjugate vaccine against Neisseria meningitidis group C (MenCPS-TT) using hydrazine-activated-tetanus toxoid (TT) as a carrier protein has been developed. Because of the toxicity of hydrazine in humans, it is necessary to monitor this substance's process control step during the vaccine production. The electroanalytical methodology was developed and validated for the determination of hydrazine during the process control of MenCPS-TT vaccine production by differential pulse polarography. The reduction potential was -0.95 V in acetone and sulphuric acid solution. The method presented linear range between 30 and 150 microgL(-1)and recovery of 93.5+/-0.8%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2010.05.079DOI Listing

Publication Analysis

Top Keywords

determination hydrazine
8
conjugate vaccine
8
process control
8
vaccine production
8
hydrazine meningococcal
4
meningococcal conjugate
4
vaccine
4
vaccine intermediary
4
intermediary product
4
product brazil
4

Similar Publications

Background: Early and accurate diagnosis of drug resistance, including resistance to second-line anti-tuberculosis (TB) drugs, is crucial for the effective control and management of pre-extensively drug-resistant TB (pre-XDR-TB) and extensively drug-resistant TB (XDR-TB). The Xpert MTB/XDR assay is the WHO recommended method for detecting resistance to isoniazid and second-line anti-TB drugs when rifampicin resistance is detected. Currently, the Xpert MTB/XDR assay is not yet implemented in Ethiopia, thus the MTBDRsl assay continues to be used.

View Article and Find Full Text PDF

In this research, we report a simple fluorescent probe designed to detect thallium(iii) ions (Tl) in artificial urine samples. The Tl signaling probe (TP-1) was readily prepared from 2-acetyl-6-methoxynaphthalene and hydrazine. In a pH 4.

View Article and Find Full Text PDF

Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.

View Article and Find Full Text PDF

Pressure-dependent kinetic analysis of the NH potential energy surface.

Phys Chem Chem Phys

January 2025

Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.

The pressure-dependent reactions on the NH potential energy surface (PES) have been investigated using CCSD(T)-F12/aug-cc-pVTZ-F12//B2PLYP-D3/aug-cc-pVTZ. This study expands the NH PES beyond the previous literature by incorporating a newly identified isomer, NHN, along with additional bimolecular reaction channels associated with this isomer, namely NNH + H and HNN(S) + H. Rate coefficients for all relevant pressure-dependent reactions, including well-skipping pathways, are predicted using a combination of transition state theory and master equation simulations.

View Article and Find Full Text PDF

This study details the synthesis of a novel ternary nanocomposite composed of MnFeO, FeVO, and modified zeolite, achieved through a two-step process. The initial step involved the hydrothermal synthesis of the MnFeO/FeVO composite, followed by its application onto modified zeolite using ultrasonic waves. The synthesized nanocomposite was thoroughly characterized using a range of analytical techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!