Background: Hyaluronic acid is expressed in atherosclerotic lesions, but its exact role in atherosclerotic disease remains unknown. As degradation of hyaluronic acid by hyaluronidase into low molecular weight hyaluronic acid (LMW-HA) is associated with inflammation and Matrix Metalloproteinase (MMP)-9 activity, we hypothesized that hyaluronic acid metabolism is increased in plaques with unstable characteristics like large lipid core, high number of macrophages, MMP-9 activity, low collagen and smooth muscle cell content.
Materials And Methods: Protein was isolated from 68 carotid artery specimens. The adjacent plaque segment was characterized for the histological parameters: lipid core, macrophage, collagen, smooth muscle cell (SMC) content and the amount of intra-plaque thrombus. Hyaluronidase activity, total hyaluronic acid and LMW-HA expression, the standard hayaluronic acid receptor CD44s and the VEGF-A binding isoform CD44v3, MMP-9 activity and the plaque instability associated growth factor Vascular Endothial Growth Factor (VEGF)-A were analysed and correlated with histological characteristics.
Results: Hyaluronidase activity, LMW-HA and CD44 expression (CD44s, CD44v3) levels were increased in atheromatous plaques compared with fibrous plaques. Total hyaluronic acid did not correlate with plaque instability. MMP-9 activity correlated with CD44s, hyaluronidase and LMW-HA expression. CD44v3 correlated with the angiogenic factor VEGF-A. In vitro stimulation of macrophages with LMW-HA increased MMP-9 activity.
Conclusions: We show for the first time that increased hyaluronic acid metabolism and elevated CD44 levels are associated with plaque destabilization potentially by increased MMP-9 activity and stimulation of angiogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2362.2010.02326.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!