An alkyne-azide addition, i.e., click, reaction in conjunction with an electrostatic self-assembly and covalent fixation (ESA-CF) process has been demonstrated to effectively construct a variety of unprecedented multicyclic polymer topologies. A series of single cyclic poly(tetrahydrofuran), poly(THF), precursors having an alkyne group (Ia), an azide group (Ib), two alkyne groups at the opposite positions (Ic), and an alkyne group and an azide group at the opposite positions (Id) have been prepared by the ESA-CF process. Moreover, a bicyclic 8-shaped precursor having two alkyne groups at the opposite positions (Ie) was synthesized. The subsequent click reaction of Ia with linear (IIa) and three-armed star (IIb) telechelic precursors having azide groups has been performed to construct bridged-type two-way (IIIa) and three-way (IIIb) paddle-shaped polymer topologies, respectively. Likewise, spiro-type tandem tricyclic (IVa) and tetracyclic (IVb) topologies resulted from Ib/Ic and Ib/Ie, respectively. Furthermore, three types of multicyclic topologies that are composed of repeating ring (Va), alternating ring/linear (Vb), and alternating ring/star (Vc) units have been synthesized from Id, Ic/IIa, and Ic/IIb, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja103402cDOI Listing

Publication Analysis

Top Keywords

polymer topologies
12
opposite positions
12
click reaction
8
esa-cf process
8
alkyne group
8
group azide
8
azide group
8
alkyne groups
8
groups opposite
8
topologies
5

Similar Publications

Cyclic poly(2-methyl-2-oxazine) (-PMOZI) brush shells on Au nanoparticles (NPs) exhibit enhanced stealth properties toward serum and different cell lines compared to their linear PMOZI (-PMOZI) counterparts. While selectively recruiting immunoglobulins, -PMOZI shells reduce overall human serum (HS) protein binding and alter the processing of complement factor 3 (C3) compared to chemically identical linear shells. Polymer cyclization significantly decreases NP uptake by nonphagocytic cells and macrophages in both complement-deficient fetal bovine serum (FBS) and complement-expressing HS, indicating ineffective functional opsonization.

View Article and Find Full Text PDF

Two-dimensional (2D) polymer network monolayers with novel block architectures were fabricated via sequential copolymerization within a pillared-layer metal-organic framework (MOF) that served as the reaction template. The MOF provides a confined 2D nanospace, restricting the crosslinking copolymerization of vinyl monomers to two dimensions. Sequential crosslinking copolymerization of methyl methacrylate and styrene, regulated by the reversible addition-fragmentation chain transfer (RAFT) process, resulted in the formation of 2D block architectures with 'patchy' domains consisting of crosslinked poly(methyl methacrylate) and polystyrene segments.

View Article and Find Full Text PDF

Ferroelectric nematic (N) liquid crystals present a compelling platform for exploring topological defects in polar fields, while their structural properties can be significantly altered by ionic doping. In this study, we demonstrate that doping the ferroelectric nematic material RM734 with cationic polymers enables the formation of polymeric micelles that connect pairs of half-integer topological defects. Polarizing optical microscopy reveals that these string defects exhibit butterfly textures, featured with a 2D polarization field divided by Néel-type kink walls into domains exhibiting either uniform polarization or negative splay and bend deformations.

View Article and Find Full Text PDF

Hydrogel three-dimensional (3D) printing has emerged as a highly valuable fabrication tool for applications ranging from electronics and biomedicine. While conventional hydrogels such as gelatin, alginate, and hyaluronic acid satisfy biocompatibility requirements, they distinctly lack reproducibility in terms of mechanical properties and 3D printability. Aiming to offer a high-performance alternative, here we present a range of amphiphilic star-shaped diblock copolypeptides of l-glutamate and l-leucine residues with different topologies.

View Article and Find Full Text PDF

Thermodynamic Perturbation Theory for Charged Branched Polymers.

J Chem Theory Comput

December 2024

Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China.

Classical density functional theory (DFT) provides a versatile framework to study the polymers with complex topological structure. Generally, a classical DFT describes the excess Helmholtz free energy of nonbonded chain connectivity due to excluded-volume effects and electrostatic correlations using the first-order thermodynamic perturbation theory (referred to as DFT-TPT1). Beyond first-order perturbation, the second-order TPT (TPT2) captures not only the correlations between neighboring monomers but also the interactions within three consecutive monomers, playing a crucial role in describing the polymer topology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!