Interest in sphingosine-1-phosphate (S1P)(1) receptor agonists has increased steadily since the discovery that the mechanism of action of fingolimod (FTY-720)-induced lymphopenia is linked to the S1P GPCR family. Fingolimod is an agonist at four out of the five S1P family receptors. Adoptive cell transfer experiments and selective S1P(1) receptor agonists provided evidence that the S1P(1) receptor is the main target responsible for trapping lymphocytes in secondary lymphoid tissue. This readily accessible, translatable biomarker has been correlated with efficacy in rodent models of immune disease. Novartis AG filed for regulatory approval for fingolimod in the US and EU for the treatment of multiple sclerosis in December 2009. In addition, more selective compounds targeting S1P receptors from several companies have entered clinical trials. These compounds can be categorized into two classes of S1P(1) receptor agonists: amino alcohol prodrugs and second-generation direct agonists. This review focuses on the development of these compounds and the role of S1P receptor family selectivity.
Download full-text PDF |
Source |
---|
PLoS One
January 2025
Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.
View Article and Find Full Text PDFCell Death Dis
January 2025
State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093, Nanjing, P.R. China.
Psoriasis is a chronic inflammatory skin disorder characterized by hyperproliferation of keratinocytes and persistent inflammation. Although persistent activation of signal transducer and activator of transcription 3 (STAT3) is implicated in its pathogenesis, the mechanisms underlying the sustained STAT3 activation remain poorly understood. Here, we identify sphingosine-1-phosphate receptor 3 (S1PR3) as a critical regulator of STAT3 activation and psoriasis pathogenesis, orchestrating a self-amplifying circuit that sustains keratinocyte hyperproliferation and chronic inflammation.
View Article and Find Full Text PDFBioorg Med Chem
January 2025
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China. Electronic address:
Psoriasis is a prevalent, chronic inflammatory disease characterized by abnormal skin plaques. To date, physical therapy, topical therapy, systemic therapy and biologic drugs are the most commonly employed strategies for treating psoriasis. Recently, many agents have advanced to clinical trials, and some anti-psoriasis drugs have been approved, including antibody drugs and small-molecule drugs.
View Article and Find Full Text PDFTheranostics
January 2025
State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
Lower vertebrates and some neonatal mammals are known to possess the ability to regenerate cardiomyocyte and fully recover after heart injuries within a limited period. Understanding the molecular mechanisms of heart regeneration and exploring new ways to enhance cardiac regeneration hold significant promise for therapeutic intervention of heart failure. Sphingosine 1-phospahte receptor 1 (S1PR1) is highly expressed in cardiomyocytes and plays a crucial role in heart development and pathological cardiac remodeling.
View Article and Find Full Text PDFRSC Med Chem
January 2025
School of Chemistry, University of Glasgow, University Avenue Glasgow G12 8QQ UK
The sphingosine-1-phosphate-5 (S1P) receptor is one of the five membrane G protein-coupled receptors that are activated by the lysophospholipid, sphingosine-1-phosphate, resulting in regulation of many cellular processes. S1P receptors are located on oligodendrocytes and are proposed to influence oligodendrocyte physiology. Understanding S1P modulation during processes such as remyelination could have potential applications for demyelinating CNS disorders such as multiple sclerosis (MS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!