The cytostatic potential of the new duplex drug 2'-deoxy-5-fluorouridylyl-(5'5')-3'-C-ethynylcytidine (5FdU(5'-5')ECyd) was evaluated in comparison to those of 5-fluorouracil (5FU), 2'-deoxy-5-fluorourindine (5FdU), 3'-C-ethynylycytidine (ECyd), cisplatin, an equimolar mixture of 5FdU + ECyd and a three component-mixture of 0.75 μM epirubicin/0.90 μM cisplatin/3.0 μM 5FU (ECF) by incubation of the two human gastric adenocarcinoma cell lines 23132/87 and MKN-45. The molar composition of ECF was taken from data of a triple combination chemotherapy for human gastric cancer. Time and dose depending inhibition of cell growth was determinated using the CASY technology. A growth decrease of both cell lines from 100% to about 20% was observed by treatment with ECF over a course of 14 days. This result provided basis to estimate the cytostatic potential of all tested drugs and combinations thereof. Corresponding high activities in respect to ECF were achieved by incubation of 23132/87 cells with single drugs 49 μM 5FU, 10 μM cisplatin, 3.4 μM 5FdU, 0.65 μM ECyd, the mixture 0.32 μM 5FdU + 0.32 μM ECyd and 0.32 μM 5FdU(5'-5')ECyd. The less sensitive MKN-45 cells require a 1.5-4 fold higher dose of the standard chemotherapeutics in order to achieve an equivalent cytostatic effect, in respect to the 23132/87 cell line,. However, the effect of the duplex drugs on MKN-45 cells was gained with a 5-fold lower dose than ECF. Due to its high cytostatic potential the duplex drug, which covalently links two active anticancer compounds, could be a new therapeutic alternative for chemotherapy in gastric cancer, currently treated with different combinations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10637-010-9483-6DOI Listing

Publication Analysis

Top Keywords

duplex drug
12
cell lines
12
cytostatic potential
12
032 μm
12
μm
10
gastric adenocarcinoma
8
adenocarcinoma cell
8
potential duplex
8
μm 5fu
8
human gastric
8

Similar Publications

Revealing New Analytical Insights into RNA Complexes: Divalent siRNA Characterization by Liquid Chromatography and Mass Spectrometry.

Anal Chem

January 2025

Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, California 94080, United States.

Accurate characterization of therapeutic RNA, including purity and identity, is critical in drug discovery and development. Here, we utilize denaturing and non-denaturing chromatography for the analysis of ∼25 kDa divalent small interfering RNA (di-siRNA), which comprises a complex 2:1 triplex structure. Ion pair reversed-phase (IPRP) liquid chromatography (LC) experiments with UV absorbance and mass spectrometry (MS) showcase a single denaturing LC method for identity confirmation, impurity profiling, and sequencing with automated MS data interpretation.

View Article and Find Full Text PDF

DNA origami-based composite nanosandwich for iteratively potentiated chemo-immunotherapy.

J Control Release

January 2025

Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, PR China; Department of Urology, Deyang People's Hospital, Deyang 618099, Sichuan, PR China. Electronic address:

Developing effective nanoplatforms for chemo-immunotherapy to achieve enhanced tumor suppression and systemic antitumor immunity has recently received extensive attention. Herein, we formulated a multifunctional DNA sandwich nanodevice, DSWAC/siPD-L1, based on triangular DNA origami, to implement enhanced cancer chemo-immunotherapy. Taking advantage of the tumor-targeting ability of the AS1411 aptamer, DSWAC/siPD-L1 efficiently delivered doxorubicin (DOX), CpG, and siPD-L1 into tumor cells.

View Article and Find Full Text PDF

Turning waste into wealth: Enzyme-activated DNA sensor based on reactant recycle for spatially selective imaging microRNA toward target cells.

Anal Chim Acta

February 2025

Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou, 310003, China. Electronic address:

Background: Amplified imaging of microRNA (miRNA) in cancer cells is essential for understanding of the underlying pathological process. Synthetic catalytic DNA circuits represent pivotal tools for miRNA imaging. However, most existing catalytic DNA circuits can not achieve the reactant recycling operation in cells and in vivo.

View Article and Find Full Text PDF

Over recent years, the LUMinescent AntiBody Sensor (LUMABS) system, utilizing bioluminescence resonance energy transfer (BRET), has emerged as a highly effective method for antibody detection. This system incorporates NanoLuc (Nluc) as the donor and fluorescent protein (FP) as the acceptor. However, the limited Stokes shift of FP poses a challenge, as it leads to significant spectral cross-talk between the excitation and emission spectra.

View Article and Find Full Text PDF

Organocatalytic enantioselective synthesis of double S-shaped quadruple helicene-like molecules.

Nat Commun

January 2025

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.

Helicene-shaped molecules are compelling chemical structures with unique twisted helical chirality and remarkable properties. Although progress occurs in the catalytic asymmetric synthesis of helicene (-like) molecules, the enantioselective synthesis of multiple helicenes, especially four or higher helicity, is still challenging and has yet to be achieved. Herein, we report an organocatalytic [4 + 2] cycloadditions to achieve double S-shaped quadruple helicene-like molecules with high enantioselectivity (up to 96% e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!