Isothiocyanates (ITCs) are present as glucosinolates in various cruciferous vegetables. Allyl isothiocyanate (AITC) is one of the common naturally occurring isothiocyanates. Recent studies have shown that AITC significantly inhibited survival of leukemia HL-60, bladder cancer UM-UC-3 and colon cancer HT-29 cells in vitro. In this study, we demonstrate that AITC significantly decreased proliferation and viability of human brain malignant glioma GBM 8401 cells in a dose-dependent manner with IC50 9.25+/-0.69 microM for 24 h-treatment. The analysis of cell cycle distribution also showed that AITC induced significantly G2/M arrest and sub-G1 phase (apoptotic population) in GBM 8401 cells. AITC markedly reduced the CDK1/cyclin B activity and protein levels by CDK1 activity assay and Western blot analysis. AITC-induced apoptotic cell death and this evidence was confirmed by morphological assessment and DAPI staining. Pretreatment with specific inhibitors of caspase-3 (Z-DEVE-FMK) and -9 (Z-LEHD-FMK) significantly reduced caspase-3 and -9 activity in GBM 8401 cells. Western blot analysis and colorimetric assays also displayed that AITC caused a time-dependent increase in cytosolic cytochrome c, pro-caspase-9, Apaf-1, AIF, Endo G and the stimulated caspase-9 and -3 activity. Our results suggest that AITC is a potent anti-human brain malignant glioma drug and it shows a remarkable action on cell cycle arrest before commitment for apoptosis is reached.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or_00000878DOI Listing

Publication Analysis

Top Keywords

gbm 8401
16
8401 cells
16
brain malignant
12
malignant glioma
12
allyl isothiocyanate
8
human brain
8
glioma gbm
8
cell cycle
8
western blot
8
blot analysis
8

Similar Publications

This study aimed to investigate the regulatory role of Aldo-keto reductase family 1 member B1 (AKR1B1) in glioma cell proliferation through p38 MAPK activation to control Bcl-2/BAX/caspase-3 apoptosis signaling. AKR1B1 expression was quantified in normal human astrocytes, glioblastoma multiforme (GBM) cell lines, and normal tissues by using quantitative real-time polymerase chain reaction. The effects of AKR1B1 overexpression or knockdown and those of AKR1B1-induced p38 MAPK phosphorylation and a p38 MAPK inhibitor (SB203580) on glioma cell proliferation were determined using an MTT assay and Western blot, respectively.

View Article and Find Full Text PDF

Isoaaptamine increases ROS levels causing autophagy and mitochondria-mediated apoptosis in glioblastoma multiforme cells.

Biomed Pharmacother

April 2023

Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan. Electronic address:

Glioblastoma multiforme (GBM) is a common central nervous system disease with a poor prognosis; its five-year survival rate is <5 %, and its median survival of 15 months. Current treatment includes chemotherapy with temozolomide, which is ineffective against GBM, suggesting an urgent need to develop novel therapies. This study evaluated isoaaptamine and aaptamine in the GBM cell lines for cell viability; GBM 8401, U87 MG, U138 MG, and T98G.

View Article and Find Full Text PDF

Chemo-resistance hinders the therapeutic efficacy of temozolomide (TMZ) in treating glioblastoma multiforme (GBM). Recurrence of GBM even after combination of maximal tumor resection, concurrent radio-chemotherapy, and systemic TMZ applocation is inevitable and attributed to the high therapeutic resistance of glioma stem cells (GSCs), which can survive, evolve, and initiate tumor tissue remodeling, the underlying mechanisms of GSCs chemo-resistance, have not been fully elucidated up-to-now. Emerging evidence showed that METTL3-mediated N6-methyladenosine (m6A) modification contributed to the self-renew and radio-resistance in GSCs, however, its role on maintenance of TMZ resistance of GSCs has not been clarified and need further investigations.

View Article and Find Full Text PDF

Upregulated Suppresses Glioblastoma Cell Growth via Apoptosis Pathway.

Int J Mol Sci

November 2022

Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China.

Glioblastoma (GBM), the most deadly primary brain tumor, presents a major medical difficulty. The need for better therapeutic targets in GBM is therefore urgent. A growing body of evidence suggests that the gene plays an important role in tumor progression and may be therapeutically useful.

View Article and Find Full Text PDF
Article Synopsis
  • Human glioblastoma (GBM) is a deadly cancer in adults with challenging treatment options due to its metastasis, highlighting the urgent need for new therapeutic compounds.
  • The study focused on bisdemethoxycurcumin (BDMC), a natural compound from turmeric, and demonstrated its effectiveness in reducing cell proliferation, motility, migration, and invasion in human GBM cells.
  • BDMC was found to significantly affect critical signaling pathways and protein levels associated with cancer progression, suggesting its potential as a candidate for future GBM treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!