AI Article Synopsis

Article Abstract

This study reports the magnetic and cytotoxicity properties of magnetic nanoparticles of La(1-x)Sr(x)MnO(3) (LSMO) with x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 by a simple thermal decomposition method by using acetate salts of La, Sr, and Mn as starting materials in aqueous solution. To obtain the LSMO nanoparticles, thermal decomposition of the precursor was carried out at the temperatures of 600, 700, 800, and 900 degrees C for 6 h. The synthesized LSMO nanoparticles were characterized by XRD, FT-IR, TEM, and SEM. Structural characterization shows that the prepared particles consist of two phases of LaMnO(3) (LMO) and LSMO with crystallite sizes ranging from 20 nm to 87 nm. All the prepared samples have a perovskite structure with transformation from cubic to rhombohedral at thermal decomposition temperature higher than 900 degrees C in LSMO samples of x

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894363PMC
http://dx.doi.org/10.1007/s11671-009-9322-xDOI Listing

Publication Analysis

Top Keywords

magnetic cytotoxicity
4
cytotoxicity properties
4
properties la1-xsrxmno3
4
magnetic
1
properties
1
la1-xsrxmno3
1

Similar Publications

Antibacterial screening of endophytic fungi from Salacia intermedia identified Diaporthe longicolla as a potent strain exhibiting good activity against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa, with an MIC of 39.1 µg/mL. Scale-up fermentation and chromatographic purification of this strain yielded three known compounds, which were cytochalasin J (1), cytochalasin H (2), and dicerandrol C (3), as identified by liquid chromatography - high mass resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Purpose: Treatment of severe burn wound injury remains a significant clinical challenge as serious infections/complex repair process and irregulating inflammation response. Human umbilical cord mesenchymal stem cells (hUC-MSCs) have a multidirectional differentiation potential and could repair multiple injuries under appropriate conditions. Poly(L-lysine)-graft-4-hydroxyphenylacetic acid (PLL-g-HPA) hydrogel is an enzyme-promoted biodegradable in hydrogel with good water absorption, biocompatibility and anti-bacterial properties.

View Article and Find Full Text PDF

Carbonic Anhydrase IX Targeted Polyaspartamide fluorescent Probes for Tumor imaging.

Int J Nanomedicine

January 2025

College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang Province, 324000, People's Republic of China.

Background: Precise intraoperative tumor delineation is essential for successful surgical outcomes. However, conventional methods are often incompetent to provide intraoperative guidance due to lack specificity and sensitivity. Recently fluorescence-guided surgery for tumors to delineate between cancerous and healthy tissues has attracted widespread attention.

View Article and Find Full Text PDF

In this study, a bovine serum albumin (BSA)-coated magnetic single-walled carbon nanotube (mCNT) was synthesized using covalent functionalization. Mitoxantrone (MTO) was chosen as a model drug, and loading/release profiles of mCNTs were evaluated. To synthesize BSA-coated mCNT, 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide and -hydroxysuccinimide were used as cross-linking agents.

View Article and Find Full Text PDF

In this study, four novels 2,5,6-trisubstituted imidazothiadiazole derivative ligands and their Ag(I) complexes were synthesized and characterized using various spectroscopic analysis techniques. First, imidazo[2,1-b][1,3,4]thiadiazole derivative (3) was obtained from the reaction of 5-amino-1,3,4-thiadiazole-2-thiol with benzyl bromide in the presence of KOH in an ethanolic medium. In the next step, the resultant compound reacted sequentially with four substituted phenacyl bromide derivatives (4a-4d) under refluxed ethanol for 24 h to obtain substituted 2-(benzylthio)-6-phenylimidazo[2,1-b][1,3,4]thiadiazole derivatives (5-8).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!