The continuing improvement of high-speed area-scan cameras has made possible the construction of parallel optical coherence tomography (OCT) systems that are competitive with the fastest demonstrated swept-source OCT systems. Unfortunately, when imaging through turbid media using a partially coherent source, parallel OCT suffers resolution loss from coherent multiple scattering, a phenomenon known as crosstalk. We demonstrate the use of a full-field OCT system employing multimode fiber in the illumination arm to reduce the spatial coherence of a partially coherent source. By reducing the spatial coherence area below the system's lateral resolution, we create a spatial coherence gate that rejects these multiply scattered photons. We quantify the image quality and resolution improvement of this method by comparing images of a USAF test chart acquired beneath turbid phantoms using both coherent and incoherent illumination and computing the resulting modulation transfer functions. We demonstrate the feasibility of this method for imaging biological specimens by imaging a Drosophila melanogaster sample.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.35.002305DOI Listing

Publication Analysis

Top Keywords

partially coherent
12
spatial coherence
12
parallel optical
8
optical coherence
8
coherence tomography
8
incoherent illumination
8
oct systems
8
coherent source
8
coherence
5
coherent
5

Similar Publications

Rationale: Macular damage is a rare yet significant ocular complication of coronavirus disease 2019 (COVID-19) infection. This report highlights the clinical features, diagnosis, treatment, and outcomes in 2 cases of COVID-19-associated macular damage, contributing to the understanding of its pathophysiology and management.

Patient Concerns: Both patients presented with a sudden onset of visual impairment and black shadows in their central visual fields shortly after contracting COVID-19.

View Article and Find Full Text PDF

The behavior of triple-cation mixed halide perovskite solar cells (PSCs) under ultrashort laser pulse irradiation at varying fluences is investigated, with a focus on local heating effects observed in femtosecond transient absorption (TA) studies. The carrier cooling time constant is found to increase from 230 fs at 2 µJ cm⁻ to 1.3 ps at 2 mJ cm⁻ while the charge population decay accelerates from tens of nanoseconds to the picosecond range within the same fluence range.

View Article and Find Full Text PDF

A co-registration method to validate optical coherence tomography in the breast surgical cavity.

Heliyon

January 2025

BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia.

Breast-conserving surgery accompanied by adjuvant radiotherapy is the standard of care for patients with early-stage breast cancer. However, re-excision is reported in 20-30 % of cases, largely because of close or involved tumor margins in the specimen. Several intraoperative tumor margin assessment techniques have been proposed to overcome this issue, however, none have been widely adopted.

View Article and Find Full Text PDF

Background: According to the model of the glymphatic system, the directed flow of cerebrospinal fluid (CSF) is a driver of waste clearance from the brain. In sleep, glymphatic transport is enhanced, but it is unclear how it is affected by anesthesia. Animal research indicates partially opposing effects of distinct anesthetics but corresponding results in humans are lacking.

View Article and Find Full Text PDF

We outline two general theoretical techniques to simulate polariton quantum dynamics and optical spectra under the collective coupling regimes described by a Holstein-Tavis-Cummings (HTC) model Hamiltonian. The first one takes advantage of sparsity of the HTC Hamiltonian, which allows one to reduce the cost of acting polariton Hamiltonian onto a state vector to the linear order of the number of states, instead of the quadratic order. The second one is applying the well-known Chebyshev series expansion approach for quantum dynamics propagation and to simulate the polariton dynamics in the HTC system; this approach allows us to use a much larger time step for propagation and only requires a few recursive operations of the polariton Hamiltonian acting on state vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!