Uniform boundary diffraction wave theory of Rubinowicz.

J Opt Soc Am A Opt Image Sci Vis

Electronic and Communication Department, Cankaya University, Ankara 06530, Turkey.

Published: July 2010

Rubinowicz introduced a uniform asymptotic evaluation of the boundary diffraction wave at the transition region [Ann. Phys. (Leipzig) 378, 339 (1924)]. The uniform theory of Rubinowicz is generalized for the improved integrals of the boundary diffraction wave. The technique is applied to the scattering problem of plane waves by an impedance half-plane, and the diffracted waves are examined numerically.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.27.001613DOI Listing

Publication Analysis

Top Keywords

boundary diffraction
12
diffraction wave
12
theory rubinowicz
8
uniform boundary
4
wave theory
4
rubinowicz rubinowicz
4
rubinowicz introduced
4
introduced uniform
4
uniform asymptotic
4
asymptotic evaluation
4

Similar Publications

Fracture toughness is an important index related to the service safety of marine risers, and weld is an essential component of the steel catenary risers. In this paper, microscopic structure characterization methods such as scanning electron microscopy (SEM) and electron back scatter diffraction (EBSD), as well as mechanical experiments like crack tip opening displacement (CTOD) and nanoindentation, were employed to conduct a detailed study on the influence of the microstructure characteristics of multi-wire submerged arc welded seams of steel catenary riser pipes on CTOD fracture toughness. The influence mechanisms of each microstructure characteristic on fracture toughness were clarified.

View Article and Find Full Text PDF

Radiation Damage Mitigation in FeCrAl Alloy at Sub-Recrystallization Temperatures.

Materials (Basel)

December 2024

Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16803, USA.

Traditional defect recovery methods rely on high-temperature annealing, often exceeding 750 °C for FeCrAl. In this study, we introduce electron wind force (EWF)-assisted annealing as an alternative approach to mitigate irradiation-induced defects at significantly lower temperatures. FeCrAl samples irradiated with 5 MeV Zr ions at a dose of 10 cm were annealed using EWF at 250 °C for 60 s.

View Article and Find Full Text PDF

In this study, FeCoNiCrSi (x = 0, 4, and 8) powders were successfully prepared using the aerosol method and employed to produce high-entropy coatings on Q235 steel via laser cladding. The microstructure and phase composition of the coatings were analyzed using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Corrosion resistance and potential were evaluated through electrochemical analysis and Kelvin probe force microscopy.

View Article and Find Full Text PDF

Temperature-Dependent Structural Evolution of Ruddlesden-Popper Bilayer Nickelate LaNiO.

Inorg Chem

January 2025

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.

A recent article ( 2024, 146, 7506-7514) details a pressure-temperature (-) phase diagram for the Ruddlesden-Popper bilayer nickelate LaNiO (LNO-2222) using synchrotron X-ray diffraction. This study identifies a phase transition from (#63) to (#69) within the temperature range of 104-120 K under initial pressure and attributes the 4/ (#139) space group to the structure responsible for the superconductivity of LNO-2222. Herein, we examine the temperature-dependent structural evolution of LNO-2222 single crystals at ambient pressure.

View Article and Find Full Text PDF

Piezoelectric materials directly convert between electrical and mechanical energies. They are used as transducers in applications such as nano-positioning and ultrasound imaging. Improving the properties of these devices requires piezoelectric materials capable of delivering a large longitudinal strain on the application of an electric field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!