Background: The aim of this study was to determine whether angiotensin II (ANG II) affects the protein and mRNA expressions of the mitochondrial antioxidant manganese superoxide dismutase (Mn-SOD) in cardiac fibroblasts of rats through inducing the phosphorylation of the proteins Akt and FOXO3a, thereby contributing to the oxidative stress in the myocardium.

Methods: Cardiac fibroblasts (passage 2) from normal male adult rats were cultured to confluency and incubated in serum-free Dulbecco's modified Eagle's medium for 24 h. The cells were then preincubated with/without the tested inhibitors for 1 h and then further incubated with/without ANG II (1 µmol/l) for 24 h.

Results: ANG II increased the production of superoxide ions in the cardiac fibroblasts, and decreased the activity levels of both Mn-SOD and CuZn-SOD, but not the activity levels of catalase and glutathione peroxidase. ANG II also decreased the mRNA and protein expressions of Mn-SOD, but not those of CuZn-SOD, catalase, and glutathione peroxidase. The likely mechanism through which ANG II produces the effect of reducing Mn-SOD activity is by reducing the extent of binding of FOXO3a to the Mn-SOD promoter. In control fibroblasts, inhibition of FOXO3a transcription with small-interfering RNA (siRNA) led to a reduction in the binding of FOXO3a to the Mn-SOD promoter, and a concomitant reduction in Mn-SOD gene expression. Our data suggest that when Akt is phosphorylated by ANG II, P-Akt is translocated from the cytoplasm to the nucleus; subsequently, nuclear phosphorylation of FOXO3a by P-Akt leads to relocalization of FOXO3a from the nucleus to the cytosol, resulting in a decrease in its transcriptional activity, and consequently in Mn-SOD expression. The likelihood of such a mechanism of action is further strengthened by the fact that inhibition of phosphoinositide 3-kinase with wortmannin or LY 294002, and Akt inhibition, were shown to lead to a decrease in P-AKT and to a consequent increase in Mn-SOD mRNA expression.

Conclusions: Our data indicate that ANG II inactivates FOXO3a by activating Akt, leading to a reduction in the expression of the antioxidant Mn-SOD, and thereby potentially contributing to oxidative stress in the myocardium.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ajh.2010.128DOI Listing

Publication Analysis

Top Keywords

cardiac fibroblasts
16
oxidative stress
12
mn-sod
10
manganese superoxide
8
superoxide dismutase
8
fibroblasts rats
8
stress myocardium
8
contributing oxidative
8
activity levels
8
mn-sod cuzn-sod
8

Similar Publications

Mid-infrared photoacoustic microscopy can capture biochemical information without staining. However, the long mid-infrared optical wavelengths make the spatial resolution of photoacoustic microscopy significantly poorer than that of conventional confocal fluorescence microscopy. Here, we demonstrate an explainable deep learning-based unsupervised inter-domain transformation of low-resolution unlabeled mid-infrared photoacoustic microscopy images into confocal-like virtually fluorescence-stained high-resolution images.

View Article and Find Full Text PDF

Somatic cells can be reprogrammed into pluripotent stem cells (iPSCs) by overexpressing defined transcription factors. Specifically, overexpression of OCT4 alone has been demonstrated to reprogram mouse fibroblasts into iPSCs. However, it remains unclear whether any other single factor can induce iPSCs formation.

View Article and Find Full Text PDF

Objective: Macrophages perform vital functions in cardiac remodeling after myocardial infarction (MI). Transglutaminase 2 (TG2) participates in fibrosis. Nevertheless, the role of TG2 in MI and mechanisms underlying macrophage polarization are unclear.

View Article and Find Full Text PDF

Decoding aging in the heart via single cell dual omics of non-cardiomyocytes.

iScience

December 2024

Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.

To understand heart aging at the single-cell level, we employed single-cell dual omics (scRNA-seq and scATAC-seq) in profiling non-myocytes (non-CMs) from young, middle-aged, and elderly mice. Non-CMs, vital in heart development, physiology, and pathology, are understudied compared to cardiomyocytes. Our analysis revealed aging response heterogeneity and its dynamics over time.

View Article and Find Full Text PDF

Background: Human interleukin (IL)-37 is a constituent of the IL-1 family with potent anti-inflammatory and immunosuppressive attributes. It has been demonstrated extensive beneficial effects on various diseases; however, its role in the pathogenesis of diabetic cardiomyopathy (DCM) remains unclear.

Methods: , DCM mouse model was established with streptozotocin injection and a high-fat diet in WT and cardiac fibroblasts (CFs) specific hIL-37b overexpression mice (IL-37-Tg).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!