Study Design: Biochemical studies aimed at optimization of protein crosslinking formulations for the treatment of degenerative disc disease and subsequent biomechanical testing of tissues treated with these formulations.

Objective: To optimize protein crosslinking formulations for treatment of degenerating spinal discs.

Summary Of Background Data: Nonsurgical exogenous crosslinking therapy is a potential new, noninvasive technology for the treatment of degenerative disc disease. The technology is based on the injection of protein crosslinking reagents into the pathologic disc to restore its mechanical properties and also to potentially increase the permeability of the tissue and so facilitate the exchange of waste products and nutrients.

Methods: Diffusion of genipin (GP) was monitored following injection into spinal discs and the effects of surfactants on diffusion studied. Formulations for GP and methylglyoxal (MG) were biochemically optimized and used to treat bovine spinal discs. Their effects on bovine anulus tissue were evaluated using a circumferential tensile test, while the GP formulation was also tested with respect to its ability to reduce disc bulge under load.

Results: GP exhibited a distinct time-dependent diffusion and sodium-dodecyl-sulfate, but not Tween-20, enhanced diffusion by 30%. Two crosslinkers, GP and MG, were inhibited by amines but enhanced by phosphate ions. Both formulations could enhance a number of physical parameters of bovine anulus tissue, while the GP formulation could reduce disc bulge following injections into spinal discs.

Conclusion: Formulations lacking amines and containing phosphate ions appear to be promising candidates for clinical use of the crosslinkers GP and MG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951499PMC
http://dx.doi.org/10.1097/BRS.0b013e3181cc3de9DOI Listing

Publication Analysis

Top Keywords

protein crosslinking
16
crosslinking formulations
12
formulations treatment
12
treatment degenerative
12
degenerative disc
12
disc disease
12
optimization protein
8
spinal discs
8
discs effects
8
bovine anulus
8

Similar Publications

Mechanisms of epigallocatechin-3-gallate-loaded metal-organic framework in preventing oxidative degradation of shrimp (Litopenaeus vannamei) surimi gel.

Food Chem

January 2025

Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

This work aimed to elucidate the deterioration mechanisms of shrimp surimi gels during refrigerated storage, and the regulatory mechanisms of epigallocatechin-3-gallate loaded cyclodextrin-based metal-organic framework (EGCG@CD-MOF) as a model antioxidant. Labele-free proteomics provided a quantitative analysis of the differential proteomic signatures of degraded proteins. Structural proteins, like myosin, paramyosin, titin, laminin, and α-actinin, along with calcium regulatory proteins, like calcineurin and sarcoplasmic calcium-binding protein were found to be highly susceptible to oxidative degradation during refrigeration.

View Article and Find Full Text PDF

Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression.

View Article and Find Full Text PDF

(L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia.

View Article and Find Full Text PDF

Structure and Functional Characteristics of Novel Polyurethane/Ferrite Nanocomposites with Antioxidant Properties and Improved Biocompatibility for Vascular Graft Development.

Polymers (Basel)

January 2025

Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.

Novel ferrite/polyurethane nanocomposites were synthesized using the in situ polymerization method after the addition of different spinel nanoferrite particles (copper, zinc, and copper-zinc) and examined as potential coatings for medical devices and implants in vascular tissue engineering. The influence of the nanoferrite type on the structure and functional characteristics of the polyurethane composites was investigated by FTIR, SWAXS, AFM, TGA, DSC, nanoindentation, swelling behavior, water contact angle, and water absorption measurements. Biocompatibility was evaluated by examining the cytotoxicity and adhesion of human endothelial cells and fibroblasts onto prepared composites and performing a protein adsorption test.

View Article and Find Full Text PDF

Collagen I is the most abundant type of intramuscular collagen. Lysyl oxidase promotes collagen cross-link formation, which helps stabilize the extracellular matrix. Furthermore, matrix metalloproteinases, responsible for collagen degradation, maintain typical muscle structure and function through remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!