Sewer system flow components identification using signal processing.

Water Sci Technol

Université de Lyon, INSA Lyon, LGCIE-Laboratoire de Génie Civil et d'Ingénierie Environnementale, Villeurbanne Cedex, France.

Published: September 2010

The development of a continuous model to simulate the behaviour of sewer systems requires detailed information on each component of the flows contributing to the global discharge. In this paper authors investigate a novel method based on signal processing and long time series data implemented with a 2 min time step (flow rate, conductivity, pH and turbidity) in order to identify the dry weather components in a separated stormwater sewer system draining an industrial catchment. The wavelet analysis is applied to the recorded data to identify main components in dry weather flow after the removing of the signal noise. This paper highlights also a method to detect inflow into sewer system and shows how hydrological modelling can be used to characterise the relevant components. These techniques could be used as a basis for several applications.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2010.281DOI Listing

Publication Analysis

Top Keywords

sewer system
12
signal processing
8
dry weather
8
sewer
4
system flow
4
components
4
flow components
4
components identification
4
identification signal
4
processing development
4

Similar Publications

Enhancing sulfide mitigation via the synergistic dosing of calcium peroxide and ferrous ions in gravity sewers: Efficiency and mechanism.

J Hazard Mater

January 2025

School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment, and Ecology, Ministry of Education, Xi'an 710055, China. Electronic address:

Chemical dosing constitutes an effective strategy for sulfide control in sewers; however, its efficacy requires further optimization and enhancement. In this study, a novel dosing strategy using the synergistic dosing of calcium peroxide (CaO) and ferrous ions (Fe) for sulfide control was proposed, and its efficacy in controlling sulfides was evaluated using a long-term laboratory-scale reactor. The results showed that adding CaO-Fe improves the effect of sulfide control.

View Article and Find Full Text PDF

Characterization of hydrodynamics around plates shaped like dragonfly wings as a sediment reduction measure in a sewer system.

Water Res

January 2025

School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, China.

Sediment control is a major concern in sewer management. Early studies focused on the parameters affecting the efficiency of existing dredging facilities, and novel long-term sediment reduction measures have not been developed. Superior sediment reduction performance has been demonstrated for plates folded at 25° placed in a pipe.

View Article and Find Full Text PDF

Wastewater treatment plant (WWTP) workers are exposed to bioaerosols containing bacteria, fungi, and endotoxin, potentially posing health risks to workers. This study quantified personal exposure levels to airborne bacteria and fungi, endotoxin, and dust among 44 workers during two seasons at four WWTPs. Associations between the exposure measurements and serum levels of biomarkers CRP, SAA, and CC16 were also assessed.

View Article and Find Full Text PDF

A low-cost soft sensor for sewer flow monitoring - Learning from water level measurements in manholes.

Water Res

January 2025

School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China. Electronic address:

Flow meters are commonly used in manholes to monitor the flow rate for sewer operation and management. However, the large-scale deployment of flow meters in a sewer system is cost-prohibitive due to their high costs and the need for frequent maintenance. This paper proposes a soft sensor that estimates flow rates based on water level measurements in a manhole.

View Article and Find Full Text PDF

CFD simulation of turbulent mass transfer of HS and O in a stirring tank.

Water Sci Technol

January 2025

Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin 13355, Germany.

This study explores the computational fluid dynamics (CFD) simulation of oxygen (O) and hydrogen sulfide (HS) mass transfer in a highly turbulent stirring tank. Using the open-source software OpenFOAM, we extended three-dimensional two-phase flow solvers with a rotating mesh feature to model the mass transfer processes between the water and air phases. The accuracy of these simulations was validated against experimental data, demonstrating a strong agreement in the mass transfer rates of HS and O.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!