Aims: Percutaneous implantation has already been used clinically and is a great option for treating young patients. The use of autologous tissue-engineered valved stents might solve the problem of degeneration and limited durability of biological heart valves.
Methods And Results: Porcine pulmonary heart valves and small intestinal submucosa were obtained from a slaughterhouse. The intestinal submucosa was used to cover the inside of the porcine pulmonary valved stents. Endothelial cells (ECs) and autologous myofibroblasts (MFs) were used from carotid artery segments of juvenile sheep. After MF seeding, constructs were placed in a dynamic bioreactor system and cultured for 16 days. After additional EC seeding, tissue-engineered valved stents were percutaneously deployed into the annulus of the pulmonary valve (n = 9). Angiography was performed at implantation and 4-week follow-up. Constructs were analysed radiographically, by post-mortem examination, and microscopically. In all but one case, orthotopic positioning of the stents (n = 6) at the time of implantation and explantation was observed angiographically, macroscopically, and by computer tomography scan and demonstrated normal valve function (n = 7). Gross morphology confirmed excellent opening and closure characteristics of all leaflets after 4 weeks (n = 7). Strong expression of α-smooth muscle actin in neo-interstitial cells and of von Willebrand factor and PECAM-1 in ECs was revealed by immunocytochemistry.
Conclusion: Good functioning and morphological characteristics were observed after percutaneous tissue-engineered valved stent implantation with autologous cells. This implantation of autologous tissue-engineered valved stents will become a valid future option in adolescents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cvr/cvq212 | DOI Listing |
Bioact Mater
March 2025
Institute for Mechanobiology, Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA.
The technology of induced pluripotent stem cells (iPSCs) has enabled the conversion of somatic cells into primitive undifferentiated cells via reprogramming. This approach provides possibilities for cell replacement therapies and drug screening, but the potential risk of tumorigenesis hampers its further development and application. How to generate differentiated cells such as valvular endothelial cells (VECs) has remained a major challenge.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
November 2024
School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada.
There is an increasing understanding that some mitral valve pathologies have developmental origins. The time course of valvulogenesis varies by animal model; in cattle, the branched chordae tendineae architecture becomes fully developed at full term. The mechanism by which chordae tendineae bifurcate during fetal development remains unknown.
View Article and Find Full Text PDFCardiol Young
July 2024
Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China.
Biomater Adv
January 2025
Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. Electronic address:
Xenogeneic decellularized heart valves (DHVs) have become one of the most commonly used scaffolds for tissue engineered heart valves (TEHVs) due to extensive resources and possessing the distinct three-layer structure similar to native heart valves. However, DHVs as scaffolds face the shortages such as poor mechanical properties, proneness to thrombosis and calcification, difficulty in endothelialization and chronic inflammatory responses etc., which limit their applications in clinic.
View Article and Find Full Text PDFAnn Biomed Eng
October 2024
Department of Biohybrid & Medical Textile (BioTex), Center for Biohybrid Medical Systems (CBMS), Institute for Applied Medical Engineering, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany.
The development of cardiovascular implants is abundant, yet their clinical adoption remains a significant challenge in the treatment of valvular diseases. Tissue-engineered heart valves (TEHV) have emerged as a promising solution due to their remodeling capabilities, which have been extensively studied in recent years. However, ensuring reproducible production and clinical translation of TEHV requires robust longitudinal monitoring methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!