Despite routine screening requirements for the notifiable fish pathogen Gyrodactylus salaris, no standard operating procedure exists for its rapid identification and discrimination from other species of Gyrodactylus. This study assessed screening and identification efficiencies under real-world conditions for the most commonly employed identification methodologies: visual, morphometric and molecular analyses. Obtained data were used to design a best-practice processing and decision-making protocol allowing rapid specimen throughput and maximal classification accuracy. True specimen identities were established using a consensus from all three identification methods, coupled with the use of host and location information. The most experienced salmonid gyrodactylid expert correctly identified 95.1% of G. salaris specimens. Statistical methods of classification identified 66.7% of the G. salaris, demonstrating the need for much wider training. Molecular techniques (internal transcribed spacer region-restriction fragment length polymorphism (ITS-RFLP)/cytochrome c oxidase I (COI) sequencing) conducted in the diagnostic laboratory most experienced in the analysis of gyrodactylid material, identified 100% of the true G. salaris specimens. Taking into account causes of potential specimen loss, the probabilities of a specimen being accurately identified were 95%, 87% and 92% for visual, morphometric and molecular techniques, respectively, and the probabilities of correctly identifying a specimen of G. salaris by each method were 81%, 58% and 92%. Inter-analyst agreement for 189 gyrodactylids assessed by all three methods using Fleiss' Kappa suggested substantial agreement in identification between the methods. During routine surveillance periods when low numbers of specimens are analysed, we recommend that specimens be analysed using the ITS-RFLP approach followed by sequencing of specimens with a "G. salaris-like" (i.e. G. salaris, Gyrodactylus thymalli) banding pattern. During periods of suspected outbreaks, where a high volume of specimens is expected, we recommended that specimens be identified using visual identification, as the fastest processing method, to select "G. salaris-like" specimens, which are subsequently identified by molecular-based techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpara.2010.04.016DOI Listing

Publication Analysis

Top Keywords

gyrodactylus salaris
8
visual morphometric
8
morphometric molecular
8
identification methods
8
specimens
8
salaris specimens
8
molecular techniques
8
specimens analysed
8
identification
7
salaris
7

Similar Publications

The introduced salmonid ectoparasite Gyrodactylus salaris has been detected on Atlantic salmon in 53 Norwegian rivers and in 39 Norwegian fish farms. In affected rivers, the mortality of Atlantic salmon juveniles is very high, estimated to a mean of 86%. G.

View Article and Find Full Text PDF

Infection with was assessed according to the criteria of the Animal Health Law (AHL), in particular, the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as laid down in Article 9 and Article 8 for listing animal species related to infection with . The assessment was performed following the ad hoc method for data collection and assessment previously developed by AHAW panel and already published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment.

View Article and Find Full Text PDF

Parasites are a significant component of biodiversity. They negatively affect fish appearance, growth, and reproduction. In this study, the prevalence of infection, diversity, and mean intensity of parasites were examined in 9 freshwater fish species (45 samples per fish species).

View Article and Find Full Text PDF

Sulphonamide inhibition studies of the β-carbonic anhydrase GsaCAβ present in the salmon platyhelminth parasite .

J Enzyme Inhib Med Chem

December 2023

Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy.

A β-class carbonic anhydrase (CA, EC 4.2.1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!