Simvastatin-dependent up-regulation of heme oxygenase-1 via mRNA stabilization in human endothelial cells.

Eur J Pharm Sci

Department of Pharmacology and Toxicology, School of Pharmacy, Martin-Luther-University, 06099 Halle, Saale, Germany.

Published: September 2010

Heme oxygenase (HO)-1, which is the inducible isoform of the rate-limiting enzyme of heme degradation, has potent antioxidant and anti-inflammatory effects and is an emerging therapeutic target for the treatment of cardiovascular disease. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, also termed statins, induce HO-1 gene expression in endothelial cells, but the underlying regulatory mechanisms are not well studied. To further investigate the statin-specific HO-1 regulation, we examined HO-1 gene expression by simvastatin in cell cultures of human endothelial cells. Simvastatin-dependent HO-1 gene activation was significantly reduced by pharmacological inhibition of the p38 MAPK and phosphotidylinositol-3-kinase (PI3K)/Akt pathways. Although HO-1 is considered to be primarily regulated at the transcriptional level, simvastatin induced activity of a human HO-1 promoter gene construct only to a minor extent. By contrast, studies with actinomycin D indicated that the half-life of HO-1 mRNA was significantly prolonged in the presence of simvastatin suggesting a post-transcriptional mode of HO-1 regulation. The increased HO-1 mRNA stability by this compound was blocked by inhibition of PI3K/Akt, but not by that of p38 MAPK. In conclusion, statin-dependent up-regulation of endothelial HO-1 is mainly regulated by stabilization of HO-1 mRNA via a PI3K/Akt-dependent signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2010.05.021DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
ho-1
12
ho-1 gene
12
ho-1 mrna
12
human endothelial
8
gene expression
8
ho-1 regulation
8
p38 mapk
8
simvastatin-dependent up-regulation
4
up-regulation heme
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!