Electrospun collagen scaffolds must be crosslinked to improve stability. Chemical crosslinking methods are often associated with cytotoxicity and can require lengthy rinsing procedures to remove the crosslinker. Physical crosslinking using dehydrothermal (DHT) treatment is utilized to stabilize fibrous collagen sponges; however, little is known regarding the effect of DHT crosslinking on electrospun collagen. To investigate the efficacy of DHT crosslinking, soluble type I collagen was electrospun and exposed to DHT crosslinking, chemical crosslinking with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC; 5 mM), and DHT+EDC. DHT crosslinking produced no change in scaffold fiber diameter or interfiber distance and reduced scaffold degradation. Strength was significantly improved by DHT (139.0 ± 34.9 kPa) compared to control but was weaker than EDC or DHT+EDC (222.7 ± 58.4, 353.3 ± 19.0 kPa, respectively). Fourier transform infrared spectroscopy (FTIR) indicated increased amide bond formation with DHT compared to control but a lower amide bond density than EDC or DHT+EDC. After crosslinking, sterilization, and rinsing (a total of 50 h for DHT, 98 h for EDC, and 122 h for DHT+EDC), fibroblasts adhered and proliferated on all scaffolds; however, cell metabolism was 12% less on DHT scaffolds. These data indicate that DHT crosslinking can be utilized to stabilize electrospun collagen scaffolds; however, a tradeoff exists between scaffold stability/strength and rapid processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEC.2009.0754 | DOI Listing |
Macromol Biosci
December 2024
Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore.
Third-degree burns result in extensive damage to the skin's epidermal and dermal layers, with limited treatment options available. Currently, xenogeneic collagen-based skin grafts are used as scaffolds to integrate into the wound bed and provide a template for neodermis formation. Existing commercial products like Integra dermal templates rely on a time-consuming and variable dehydrothermal (DHT) crosslinking process.
View Article and Find Full Text PDFPolymers (Basel)
August 2024
Institute of Rock Structure and Mechanics of The Czech Academy of Sciences, v. v. i., V Holešovičkách 94/41, Prague 8, 182 09 Prague, Czech Republic.
Collagen nanofibrous materials have become integral to tissue engineering due to their exceptional properties and biocompatibility. Dehydrothermal crosslinking (DHT) enhances stability and maintains structural integrity without the formation of toxic residues. The study involved the crosslinking of electrospun collagen, applying DHT with access to air and under vacuum conditions.
View Article and Find Full Text PDFBioengineering (Basel)
August 2024
Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA.
Cultivated meat, an advancement in cellular agriculture, holds promise in addressing environmental, ethical, and health challenges associated with traditional meat production. Utilizing tissue engineering principles, cultivated meat production employs biomaterials and technologies to create cell-based structures by introducing cells into a biocompatible scaffold, mimicking tissue organization. Among the cell sources used for producing muscle-like tissue for cultivated meats, primary adult stem cells like muscle satellite cells exhibit robust capabilities for proliferation and differentiation into myocytes, presenting a promising avenue for cultivated meat production.
View Article and Find Full Text PDFInt J Biol Macromol
May 2024
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China. Electronic address:
Full-thickness wounds are severe cutaneous damages with destroyed self-healing function, which need efficient clinical interventions. Inspired by the hierarchical structure of natural skin, we have for the first time developed a biomimetic tri-layered artificial skin (TLAS) comprising silica gel-collagen membrane-collagen porous scaffold for enhanced full-thickness wound healing. The TLAS with the thickness of 3-7 mm displays a hierarchical nanostructure consisting of the top homogeneous silica gel film, the middle compact collagen membrane, and the bottom porous collagen scaffold, exquisitely mimicking the epidermis, basement membrane and dermis of natural skin, respectively.
View Article and Find Full Text PDFJ Biomech Eng
September 2024
Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695; Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
Tendinopathy is a leading cause of mobility issues. Currently, the cell-matrix interactions involved in the development of tendinopathy are not fully understood. In vitro tendon models provide a unique tool for addressing this knowledge gap as they permit fine control over biochemical, micromechanical, and structural aspects of the local environment to explore cell-matrix interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!