Novel thermoresponsive polymer brush surfaces for harvesting cell sheet were fabricated by the surface-initiated RAFT polymerization of N-isopropylacrylamide (IPAAm) on azoinitiator-immobilized glass substrates in the presence of dithiobenzoate compound as a chain transfer agent (CTA). The chain length of the grafted PIPAAm on the surface was controlled by changing CTA concentration. Additionally, PIPAAm graft density on the surface was successfully regulated by grafting from azoinitiator-immobilized surfaces with various densities. By adjusting both the chain length and the density of grafted PIPAAm, a series of thermoresponsive polymer brush surfaces were prepared to regulate cell adhesion/detachment behavior by solely temperature change across the PIPAAm's lower critical solution temperature of 32 degrees C. PIPAAm brush surfaces were successfully optimized to recover the cell sheets of bovine carotid artery endothelial cells. Additionally, the immunostaining study revealed that the cell sheets can be recovered with their intact extracellular matrix (ECM) from PIPAAm surfaces, indicating that the cell sheets can be effectively transplanted to damaged tissues and organs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm100342e | DOI Listing |
Phys Rev Lett
December 2024
Quantinuum, 303 S. Technology Court, Broomfield, Colorado 80021, USA.
Although quantum mechanics underpins the microscopic behavior of all materials, its effects are often obscured at the macroscopic level by thermal fluctuations. A notable exception is a zero-temperature phase transition, where scaling laws emerge entirely due to quantum correlations over a diverging length scale. The accurate description of such transitions is challenging for classical simulation methods of quantum systems, and is a natural application space for quantum simulation.
View Article and Find Full Text PDFOpen Forum Infect Dis
January 2025
Department of Medicine, Division of Infectious Diseases, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania, USA.
Background: Improved diagnostic testing (DT) of infections may optimize outcomes for solid organ transplant recipients (SOTR), but a comprehensive analysis is lacking.
Methods: We conducted a systematic literature review across multiple databases, including EMBASE and MEDLINE(R), of studies published between 1 January 2012-11 June 2022, to examine the evidence behind DT in SOTR. Eligibility criteria included the use of conventional diagnostic methods (culture, biomarkers, directed-polymerase chain reaction [PCR]) or advanced molecular diagnostics (broad-range PCR, metagenomics) to diagnose infections in hospitalized SOTR.
Commun Biol
January 2025
Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Stalled ribosomes cause collisions, impair protein synthesis, and generate potentially harmful truncated polypeptides. Eukaryotic cells utilize the ribosome-associated quality control (RQC) and no-go mRNA decay (NGD) pathways to resolve these problems. In yeast, the E3 ubiquitin ligase Hel2 recognizes and polyubiquitinates disomes and trisomes at the 40S ribosomal protein Rps20/uS10, thereby priming ribosomes for further steps in the RQC/NGD pathways.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
In this study, the dispersion behavior of MoS₂ in ionic liquids (ILs) with varying alkyl chain lengths was the primary focus of investigation, followed by the design of a novel PAM/SMA/CMC/PDA@MoS hydrogel. By optimizing the concentrations of CMC and PDA@MoS, a bifunctional hydrogel with both sensing and catalytic functions was successfully developed. Mechanical tests revealed that the PAM/SMA/CMC/0.
View Article and Find Full Text PDFInt J Pharm
January 2025
University of Applied Sciences and Arts Northwest. Switzerland, School of Life Sciences, Institute of Pharma Technology, Hofackerstr. 30 CH-4132 Muttenz, Switzerland. Electronic address:
In recent years, deep eutectic solvents (DESs) with their outstanding solubilization properties have emerged as strong candidates for oral enabling formulations of poorly soluble drugs. This study explores the use of drug-based therapeutic DESs (THEDESs) to solubilize a poorly soluble compound with the aim of providing a fixed-dose combination of two complementary therapeutic agents. Specifically, potential anticancer effects of ibuprofen (IBU) are harnessed in a novel type of THEDES to dissolve higher amounts of abiraterone acetate (AbAc), an antitumor agent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!