Condensation and precipitation of chromatin by multivalent cations.

J Biomol Struct Dyn

Laboratorie de Chimie Macromoléculaire et Chimie Physique, Université de Liège, Belgium.

Published: February 1991

The condensation and the precipitation of rat liver chromatin upon addition of spermine4+, spermidine3+, hexamminecobalt(III)3+ and Mg2+ cations have been studied using solubility, fluorescence, circular dichroism, melting curves, electric dichroism and spermidine binding measurements, made on both soluble and precipitated complexes. The soluble complexes obtained with tetra- and trivalent cations were depleted from all histones and enriched in other proteins, particularly high mobility group proteins 1 and 2, which brings about an important enhancement of tryptophan fluorescence without modification of its two lifetimes 5.1 and 1.2 ns. In the precipitates the non-histone proteins are eliminated. Under precipitation by Mg2+ ions, the distribution of proteins remains practically unchanged. The electric dichroism and the melting curves indicate that the soluble complexes between polyamines and chromatin undergo important condensation and, at high ratios of cation over phosphate, are constituted by heterogeneous assemblies of non-histone proteins and DNA. On the contrary, the insoluble complexes seem to retain the main features of original chromatin. Precipitation by Mg2+ ions reveal much less drastic changes than those produced by polyamines. Precipitation by spermidine occurs when one cation is bound per eight nucleotides, which in addition to the histone positive charges brings about a complete neutralization of chromatin phosphates.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.1991.10507849DOI Listing

Publication Analysis

Top Keywords

condensation precipitation
8
dichroism melting
8
melting curves
8
electric dichroism
8
soluble complexes
8
non-histone proteins
8
precipitation mg2+
8
mg2+ ions
8
chromatin
5
proteins
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!