Background: In a previous experimental study we showed that the administration of a large water load in a short time increases the urinary flow and the transport capacity in the excretory tract of the rabbit ureter. In human subjects drinking a water load of 25 ml/kg(BW) in 30 minutes, diuresis, creatinine and urea clearance increase more than in those drinking the same load in 24 hours.
Purpose: The aim of the present study was to investigate possible correlations between percent reduction and baseline values of serum urea, creatinine, folic acid, and magnesium in humans.
Methods And Results: 20 volunteers were divided in two groups. Subjects in group 1 received a water load of 25 ml/kg(BW) in 24 hours followed by the same load in 30 minutes. Subjects in group 2 received the same water load but in inverse order. Before and after each water administration, the following variables were measured and compared: diuresis, serum urea, creatinine, folic acid and magnesium concentration, and urea and creatinine clearance.
Results: Serum urea and folic acid concentration decreased up to 40% after administration of the water load in 24 hours. Serum creatinine concentration decreased up to 20% after administration of the water load in 30 minutes. The concentration drop of these metabolites increased with increasing baseline metabolite concentrations.
Download full-text PDF |
Source |
---|
Sci Bull (Beijing)
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:
The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
The present study evaluates for the first time the seasonal performance of an innovative green groundwater treatment. The pilot plant combines microalgae-bacteria treatment and a cork-wood biofilter to reduce nitrates, pesticides, antibiotics (ABs), and antibiotic resistance genes (ARGs) from groundwater. Groundwater had nitrate concentrations ranging from 220 to 410 mg/L, while ABs (sulfonamides and fluoroquinolones) and pesticides (triazines) were detected at concentrations ranging from a few ng/L to 150 ng/L.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Chemistry and Environment, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.
Microplastic pollution, a major global environmental issue, is gaining heightened attention worldwide. Marginal seas are particularly susceptible to microplastic contamination, yet data on microplastics in marine sediments remain scarce, especially in the Beibu Gulf. This study presents a large-scale investigation of microplastics in the surface sediments of the Beibu Gulf to deciphering their distribution, sources and risk to marginal seas ecosystems.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electric Engineering, Changwon National University, Changwon 51140, Republic of Korea.
This study investigates the optimal design and operation of an underwater ultrasonic system for algae removal, focusing on the electromechanical load of Langevin-type piezoelectric transducers. These piezoelectric transducers, which operate in underwater environments, exhibit variations in electrical-mechanical impedance due to practical environmental factors, such as waterproof molding structures or variations in pressure and flow rates depending on the water depth. To address these challenges, we modeled the underwater load conditions using the finite element method and analyzed the impedance characteristics of the piezoelectric transducer under realistic environmental conditions.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China.
To improve the application of carbon-fiber-reinforced polymers (CFRPs) in civil engineering, the long-term durability of CFRP anchorage systems has become a critical issue. Temperature fluctuations can significantly impact the bond performance between CFRPs and the load transfer medium (LTM), making it essential to understand the effects of temperature on the durability of CFRP anchorages. Therefore, this study investigates the influence of temperature on the durability of CFRP anchorages through aging tests on 30 epoxy-filled CFRP-bonded anchorage specimens, followed by pull-out tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!