Cysteine is considered as a conditionally indispensable amino acid. Its dietary supply should thus be increased when endogenous synthesis cannot meet metabolic need, such as during inflammatory diseases. However, studies in animal models suggest a high first-pass extraction of dietary cysteine by the intestine, limiting the interest for an oral supplementation. We investigated here unidirectional fluxes of cysteine across the portal-drained viscera (PDV) of multi-catheterized minipigs, using simultaneous intragastric L-[(15)N] cysteine and intravenous L-[3,3D2] cysteine continuous infusions. We showed that in minipigs fed with an elemental enteral solution, cysteine first-pass extraction by the intestine is about 60% of the dietary supply, and that the PDV does not capture arterial cysteine. Beside dietary cysteine, the PDV release non-dietary cysteine (20% of the total cysteine release), which originates either from tissue metabolism or from reabsorption of endogenous secretion, such as glutathione (GSH) biliary excretion. Experimental ileitis induced by local administration of trinitrobenzene sulfonic acid, increased liver and ileal GSH fractional synthesis rate during the acute phase of inflammation, and increased whole body flux of cysteine. However, cysteine uptake and release by the PDV were not affected by ileitis, suggesting an adaptation of the intestinal sulfur amino acid metabolism in order to cover the additional requirement of cysteine linked to the increased GSH synthesis. We conclude that the small intestine sequesters large amounts of dietary cysteine during absorption, limiting its release into the bloodstream, and that the other tissues of the PDV (colon, stomach, pancreas, spleen) preferentially use circulating methionine or cysteine-containing peptides to cover their cysteine requirement.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00726-010-0672-6DOI Listing

Publication Analysis

Top Keywords

cysteine
16
dietary cysteine
12
portal-drained viscera
8
amino acid
8
dietary supply
8
first-pass extraction
8
dietary
5
pdv
5
cysteine fluxes
4
fluxes portal-drained
4

Similar Publications

Hydrogen sulfide mediates the interaction between C. elegans and Actinobacteria from its natural microbial environment.

Cell Rep

January 2025

Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Caenorhabditis elegans proliferates poorly in the presence of abundant Actinobacteria from its natural ecology, but it is unknown why. Here, we show how perturbed levels of hydrogen sulfide modulate the growth rate of both C. elegans and Actinobacteria.

View Article and Find Full Text PDF

Background: We investigated the relationship between the cerebrospinal fluid (CSF) proteome in Alzheimer's disease (AD) and the clinical and biomarker-assisted diagnoses.

Methods: CSF was collected in 500 individuals of non-Hispanic white, African Americans, and Caribbean Hispanic individuals from Dominican Republic and New York City. CSF biomarkers of AD were measured including P-tau181, Aβ40, Aβ42, total-tau, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP).

View Article and Find Full Text PDF

High Selectivity Fluorescence and Electrochemical Dual-Mode Detection of Glutathione in the Serum of Parkinson's Disease Model Mice and Humans.

Anal Chem

January 2025

Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of alpha-synuclein. Glutathione (GSH), a key antioxidant, is significantly depleted in PD patients. This study presents a dual-mode detection strategy for selectively determining GSH using a single probe.

View Article and Find Full Text PDF

Cysteine modifications as molecular switch governing salicylic acid biosynthesis in systemic acquired resistance.

J Integr Plant Biol

January 2025

Plant Stress Physiology and Proteomics Laboratory, College of General Education, Kookmin University, Seoul, 02707, South Korea.

This commentary discusses the recent identification of hydrogen peroxide as systemic acquired resistance-inducing signal and its dose-dependent effect on salicylic acid biosynthesis in the systemic tissues in response to a pathogen attack.

View Article and Find Full Text PDF

Background: Oxidative stress (OS) has been a target of interest for vascular dementia, given its implications in pathogenesis. OS may be important in prodromal stage, such as vascular mild cognitive impairment (vMCI), and examining OS markers in vMCI may help better understand biological processes in the onset of cognitive impairment. Our study compared OS levels in vMCI vs controls, and explored whether OS markers predicted the response to antioxidant treatments in vMCI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!