Th17 immunity has been shown to regulate autoimmune diabetes in mice. IL-17 neutralization prevented development of diabetes when given postinitiation of insulitis but not earlier, suggesting interference with the effector phase of the disease. Islet-cell Ag-specific Th17 cells converted into IFN-gamma-secreting Th1-like cells and caused diabetes in mice recipients. The role of IL-17 in human type 1 diabetes (T1D) is, however, not established. In this study, we show upregulation of Th17 immunity in peripheral blood T cells from children with T1D. This was characterized by increased IL-17 secretion and expression of IL-17, IL-22, and retinoic acid-related orphan receptor C isoform 2, but also FOXP3 transcripts upon T cell activation in vitro. Also, circulating memory CD4 cells from children with T1D showed the same pattern of IL-17, IL-22 and FOXP3 mRNA upregulation, indicating IL-17 pathway activation in vivo. IL-17-positive T cells appeared to be CD4(+) cells expressing TCR-alphabeta and CCR6, and a subpopulation showed coproduction of IFN-gamma. Given the Th17 immunity in T1D, we demonstrated that IL-17 had detrimental effects on human islet cells in vitro; it potentiated both inflammatory and proapoptotic responses. Our findings highlight the role of IL-17 immunity in the pathogenesis of human T1D and point to a potential therapeutic strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1000788 | DOI Listing |
Ann Pediatr Endocrinol Metab
December 2024
Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea.
Fatty acids play critical roles in maintaining the cellular functions of T cells and regulating T-cell immunity. This review synthesizes current research on the influence of fatty acids on T-cell subsets, including CD8+ T cells, TH1, TH17, Treg (regulatory T cells), and TFH (T follicular helper) cells. Fatty acids impact T cells by modulating signaling pathways, inducing metabolic changes, altering cellular structures, and regulating gene expression epigenetically.
View Article and Find Full Text PDFPsychoneuroendocrinology
December 2024
Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Hospital São José Research Center, Criciúma, SC, Brazil.
COVID-19 has significant long-term impacts, including a chronic syndrome known as long-COVID, characterized by persistent symptoms post-recovery. The inflammatory response during acute infection is hypothesized to influence long-term outcomes. This study aimed to identify inflammatory biomarkers predictive of functional outcomes one year after hospital discharge.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.
Background: Hypomorphic mutations in the () gene cause a glycosylation disorder that leads to immunodeficiency. It is often associated with recurrent infections and atopy. The exact etiology of this condition remains unclear.
View Article and Find Full Text PDFClin Exp Immunol
January 2025
Department of Clinical Laboratory, State key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
Neuro-Behçet's disease (NBD) is a more severe but rare symptom of Behçet's disease (BD), which is mainly divided into parenchymal NBD (p-NBD) involving brain stem, spinal cord, and cerebral cortex. Non-p-NBD manifests as intracranial aneurysm, cerebral venous thrombosis, peripheral nervous system injuries, and mixed parenchymal and non-parenchymal disease. P-NBD is pathologically characterized by perivasculitis presenting with cerebrospinal fluid (CSF) pleocytosis, elevated total protein, and central nervous system (CNS) infiltration of macrophages and neutrophils, which are subdivided into acute and chronic progressive stages according to relapsing-remitting courses and responses to steroids.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: Inflammatory bowel disease (IBD) is a persistent inflammation of the digestive system, and Mesenchymal Stem Cells (MSCs) and their exosomes have demonstrated potential as treatments for this condition. The objective of this research was to examine the possible effectiveness of intraperitoneal injection of umbilical cord-MSCs (UC-MSCs) and their exosomes through a two-time injection regimen in a mouse model.
Method: In this study, an animal model of a specific type of IBD in C57BL/6 mice, induced by dextran sulfate sodium (DSS), was utilized.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!