Muscular dystrophies are often associated with significant cardiac disease that can be the prominent feature associated with gene mutations in sarcoglycan. Cardiac cell death is a main feature of cardiomyopathy in sarcoglycan deficiency and may arise as a cardiomyocyte intrinsic process that remains unclear. Deficiency of delta-sarcoglycan (delta-SG) induces disruption of the dystrophin-associated glycoprotein complex, a known cause of membrane instability that may explain cardiomyocytes cytosolic Ca2+ increase. In this study we assessed the hypothesis that cytosolic Ca2+ increase triggers cardiomyocyte death through mitochondrial Ca2+ overload and dysfunction in the delta-SG-deficient CHF147 hamster. We showed that virtually all isolated CHF147 ventricular myocytes exhibited elevated cytosolic and mitochondrial Ca2+ levels by the use of the Fura-2 and Rhod-2 fluorescent probes. Observation of living cells with Mito-Tracker red lead to the conclusion that approximately 15% of isolated CHF147 cardiomyocytes had disorganized mitochondria. Transmission electron microscope imaging showed mitochondrial swelling associated with crest and membrane disruption. Analysis of the mitochondrial permeability transition pore (MPTP) activity using calcein revealed that mitochondria of CHF147 ventricular cells were twofold leakier than wild types, whereas reactive oxygen species production was unchanged. Bax, Bcl-2, and LC3 expression analysis by Western blot indicated that the intrinsic apoptosis and the cell death associated to autophagy pathways were not significantly activated in CHF147 hearts. Our results lead to conclusion that cardiomyocytes death in delta-SG-deficient animals is an intrinsic phenomenon, likely related to Ca2+-induced necrosis. In this process Ca2+ overload-induced MPTP activation and mitochondrial disorganization may have an important role.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00545.2009DOI Listing

Publication Analysis

Top Keywords

ca2+ overload
8
mitochondrial permeability
8
permeability transition
8
transition pore
8
cell death
8
cytosolic ca2+
8
ca2+ increase
8
mitochondrial ca2+
8
isolated chf147
8
chf147 ventricular
8

Similar Publications

Eversa Transform (ETL) was immobilized on octyl agarose beads at two different enzymes loadings (1 mg/g and 15 mg/g) under 18 different conditions, including different pH values, buffers, additives (different solvents, Ca, NaCl). Their activity was analyzed at pH 5 and 7 with p-nitrophenyl butyrate and at pH 5 with triacetin, determining also its stability at pH 5 and 7 (in different media). Ca stabilized ETL biocatalysts while phosphate destabilized them.

View Article and Find Full Text PDF

While pancreatic beta-cell proliferation has been extensively studied, the role of cell death during islet development remains incompletely understood. Using a genetic model of caspase inhibition in beta cells coupled with mathematical modeling, we here discover an onset of beta-cell death in juvenile zebrafish, which regulates beta-cell mass. Histologically, this beta-cell death is underestimated due to phagocytosis by resident macrophages.

View Article and Find Full Text PDF

Although the pathogenesis and mechanism of congenital skeletal dysplasia are better understood, progress in drug development and intervention research remains limited. Here we report that melatonin treatment elicits a mitigating effect on skeletal abnormalities caused by deficiency. In addition to our previous finding of endoplasmic reticulum stress upon deficiency, we found calcium (Ca) overload jointly contributed to -associated chondrodysplasias.

View Article and Find Full Text PDF

Ovarian cancer (OC) is a highly malignant gynecological tumor, and its effective treatment is frequently impeded by drug resistance and recurrent tumor growth. The reprogramming of glutamine metabolism in ovarian cancer is closely associated with tumor progression and the immunosuppressive tumor microenvironment. Recently, targeting metabolic reprogramming has emerged as a promising approach for cancer therapy.

View Article and Find Full Text PDF

Over the past few decades, microtubules have been targeted by various anticancer drugs, including paclitaxel and eribulin. Despite their promising effects, the development of drug resistance remains a challenge. We aimed to define a novel cell death mechanism that targets microtubules using eribulin and to assess its potential in overcoming eribulin resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!