Vaccine-induced immunity has been shown to alter the course of a respiratory syncytial virus (RSV) infection both in murine models and in humans. To elucidate which mechanisms underlie the effect of vaccine-induced immunity on the course of RSV infection, transcription profiles in the lungs of RSV-infected mice were examined by microarray analysis. Three models were used: RSV reinfection as a model for natural immunity, RSV challenge after formalin-inactivated RSV vaccination as a model for vaccine-enhanced disease, and RSV challenge following vaccination with recombinant RSV virus lacking the G gene (DeltaG-RSV) as a model for vaccine-induced immunity. Gene transcription profiles, histopathology, and viral loads were analyzed at 1, 2, and 5 days after RSV challenge. On the first 2 days after challenge, all mice displayed an expression pattern in the lung similar of that found in primary infection, showing a strong innate immune response. On day 5 after RSV reinfection or after challenge following DeltaG-RSV vaccination, the innate immune response was waning. In contrast, in mice with vaccine-enhanced disease, the innate immune response 5 days after RSV challenge was still present even though viral replication was diminished. In addition, only in this group was Th2 gene expression induced. These findings support a hypothesis that vaccine-enhanced disease is mediated by prolonged innate immune responses and Th2 polarization in the absence of viral replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937637PMC
http://dx.doi.org/10.1128/JVI.00302-10DOI Listing

Publication Analysis

Top Keywords

rsv challenge
16
innate immune
16
vaccine-induced immunity
12
vaccine-enhanced disease
12
immune response
12
rsv
10
gene expression
8
immune responses
8
respiratory syncytial
8
syncytial virus
8

Similar Publications

Non-colorectal Cancer Screening and Vaccinations in Patients with Inflammatory Bowel Disease: Expert Review.

Clin Gastroenterol Hepatol

January 2025

Inflammatory Bowel Disease Center, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville FL. Electronic address:

Description: The aim of this American Gastroenterological Association (AGA) Clinical Practice Update (CPU) is to provide best practice advice (BPA) statements for gastroenterologists and other health care providers who provide care to patients with inflammatory bowel disease (IBD). The focus is on IBD-specific screenings (excluding colorectal cancer screening, which is discussed separately) and vaccinations. We provide guidance to ensure that patients are up to date with the disease-specific cancer screenings, vaccinations, as well as advice for mental health and general wellbeing.

View Article and Find Full Text PDF

Evaluating the Impact of N-Glycan Sequon Removal in the p27 Peptide on RSV F Protein Immunogenicity and Functionality.

Viruses

November 2024

Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium.

Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in young children, elderly and immunocompromised patients worldwide. The RSV fusion (F) protein, which has 5-6 N-glycosylation sites depending on the strain, is a major target for vaccine development. Two to three of these sites are located in the p27 peptide, which is considered absent in virions.

View Article and Find Full Text PDF

Background/objectives: Research on respiratory virus immunity duration post-vaccination reveals variable outcomes. This study performed a literature review to assess the efficacy and longevity of immune protection post-vaccination against SARS-CoV-2, influenza, and respiratory syncytial virus (RSV), with a focus on immunocompromised populations. Specific objectives included examining humoral and cellular immune responses and exploring the impact of booster doses and hybrid immunity on extending protection.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) causes symptoms similar to a mild cold for adults, but in case of infants, it causes bronchitis and/or pneumonia, and in some cases, mortality. Mucosal immunity within the respiratory tract includes tissue-resident memory T (T) cells and tissue-resident memory B (B) cells, which provides rapid and efficient protection against RSV re-infection. Therefore, vaccine strategies should aim to generate mucosal immune responses.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a leading cause of respiratory infections, particularly affecting young infants, older adults, and individuals with comorbidities. : This document, developed as a consensus by an international group of experts affiliated with the World Association of Infectious Diseases and Immunological Disorders (WAidid), focuses on recent advancements in RSV prevention, highlighting the introduction of monoclonal antibodies (mAbs) and vaccines. : Historically, RSV treatment options were limited to supportive care and the monoclonal antibody palivizumab, which required multiple doses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!