Purpose: Aberrant promoter hypermethylation of tumor suppressor genes is a promising marker for lung cancer detection. We investigated the likelihood of detecting aberrant DNA methylation of tumor suppressor genes in plasma samples of patients with abnormalities of the lung detected upon computed tomography (CT) scan.
Experimental Design: In a small evaluation cohort, four gene promoters (DCC, Kif1a, NISCH, and Rarb) were found to be methylated with increased frequency in samples from cancer patients specifically. We then examined DNA from 93 plasma samples from patients with abnormal findings in the lung detected upon CT scan for aberrant methylation of these four gene promoters by quantitative fluorogenic real-time PCR. The patients were divided into two groups, ground glass opacity (n = 23) and cancerous tumors (n = 70). Plasma DNA from age-matched nodule-free individuals were used as controls (n = 80).
Results: In plasma, 73% of patients with cancerous tumors showed methylation of at least one gene with a specificity of 71% (P = 0.0001). Only 22% patients with ground glass opacity exhibited methylation of at least one gene. When smoking history was taken into account, 72% of cancer patients with no smoking history or those who smoked <20 pack-years showed methylation of at least one gene with 100% specificity (P = 0.05) when compared with matched controls. Among heavy smokers with 20+ pack-years of smoking history, 30% of the control group and 73% of the patients with cancerous tumors showed methylation (P = 0.0001).
Conclusions: These biomarkers can distinguish between cancerous and noncancerous abnormal CT findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899894 | PMC |
http://dx.doi.org/10.1158/1078-0432.CCR-09-3304 | DOI Listing |
Environ Sci Technol
January 2025
National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
The neurotoxin methylmercury (MeHg) is produced mainly from the transformation of inorganic Hg by microorganisms carrying the gene pair. Paddy soils are known to harbor diverse microbial communities exhibiting varying abilities in methylating inorganic Hg, but their distribution and environmental drivers remain unknown at a large spatial scale. Using gene amplicon sequencing, this study examined Hg-methylating communities from major rice-producing paddy soils across a transect of ∼3600 km and an altitude of ∼1300 m in China.
View Article and Find Full Text PDFPlant Cell
January 2025
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
Plant architecture greatly contributes to grain yield, but the epigenetic regulation of plant architecture remains elusive. Here, we identified the maize (Zea mays L.) mutant plant architecture 1 (par1), which shows reduced plant height, shorter and narrower leaves, and larger leaf angles than the wild type.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing city, Chongqing, China.
Hepatocellular carcinoma (HCC) is a malignant tumour that poses a serious threat to human health and places a heavy burden on individuals and society. However, the role of GPC1 in the malignant progression of HCC is unknown. In this study, we analysed the expression of GPC1 in HCC, and its association with poor patient prognosis.
View Article and Find Full Text PDFAm J Transl Res
December 2024
Department of Emergency Medical Services, Faculty of Health Sciences AlQunfudah, Umm Al-Qura University Mekkah, Saudi Arabia.
Background: Liver Hepatocellular Carcinoma (LIHC) is a prevalent and aggressive liver cancer with limited therapeutic options. Identifying key genes involved in LIHC can enhance our understanding of its molecular mechanisms and aid in the development of targeted therapies. This study aims to identify differentially expressed genes (DEGs) and key hub genes in LIHC using bioinformatics approaches and experimental validation.
View Article and Find Full Text PDFCancer Sci
January 2025
Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, Japan.
Colorectal cancer (CRC) is well characterized in terms of genetic mutations and the mechanisms by which they contribute to carcinogenesis. Mutations in APC, TP53, and KRAS are common in CRC, indicating key roles for these genes in tumor development and progression. However, for certain tumors with low frequencies of these mutations that are defined by tumor location and molecular phenotypes, a carcinogenic mechanism dependent on BRAF mutations has been proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!