Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To understand how to optimize performance of a partially nitrifying plant, the dynamics of Nitrospira and Nitrobacter abundance were studied over a 1 year period using quantitative polymerase chain reaction (qPCR) and their relative contributions to nitrite oxidation assessed including the affects of temperature and dissolved oxygen (DO). Correlation coefficients linking shifts in the community composition of nitrite-oxidizing bacteria (NOB) to operational or environmental variables indicated Nitrospira was significantly and negatively correlated to nitrite concentrations (r = -0.45, P < 0.01) and DO (r = -0.46, P < 0.01), while temperature showed a strong positive correlation (r = 0.59, P < 0.0001). However, the Nitrobacter portion of the total NOB populations showed a positive correlations with DO (r = 0.38, P < 0.01) and hydraulic retention time (HRT) (r = 0.33, P < 0.05), as well as being negatively correlated with temperature (r = -0.49, P < 0.001) suggesting specific niche adaptations within the NOB community. Nitrospira was dominant being better adapted to the low DO and shorter sludge retention times (SRT) of this plant, while Nitrobacter increased in abundance during the winter months, when temperatures were lower and DO concentrations higher. Principal component analysis (PCA) results supported these findings by the close proximity of Nitrospira and temperature biplots of PC1 and PC2 as well as grouping Nitrobacter, NO(2)(-)-N, HRT, and DO in the loadings together. The clustering of samples from specific dates also exhibited a strong seasonality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2010.05.037 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!