Background And Purpose: Acurhagin, a member of versatile metalloproteinase disintegrins from Agkistrodon acutus venom, has been identified as a platelet aggregation inhibitor, previously. Here, acurhagin-C, the C-terminal Glu-Cys-Asp (ECD)-containing fragment of acurhagin, was evaluated for its biological activities and potential applications in anti-angiogenic therapy.
Experimental Approach: Human umbilical vein endothelial cells (HUVECs) were treated with acurhagin-C to assay effects on viability, apoptosis, adhesion, migration, invasion, proliferation and angiogenesis. The recognition site and signalling involved for the interactions of acurhagin-C with HUVEC were determined using flow cytometric, electrophoresis and immunoblotting analyses.
Key Results: Acurhagin-C decreased viability and induced apoptosis in HUVEC. It also dose-dependently inhibited HUVEC adhesion to immobilized extracellular matrices fibronectin, collagen I and vitronectin with respective IC(50) values of approximately 0.6, 0.3 and 0.1 microM. Acurhagin-C prevented migration and invasion of HUVEC through vitronectin- and Matrigel-coated barriers respectively. Furthermore, acurhagin-C attenuated fibroblast growth factor-2-primed angiogenesis both in vitro and in vivo, and specifically blocked the binding of anti-alphavbeta3 monoclonal antibody 23C6 to HUVEC in an ECD-dependent manner. However, purified alphavbeta3 also dose-dependently bound to immobilized acurhagin and acurhagin-C with a saturable pattern. Interference with integrin alphavbeta3-mediated functions and promotion of caspase-3 activation by acurhagin-C affected morphology of HUVEC and induced apoptosis.
Conclusions And Implications: Acurhagin-C elicited endothelial anoikis via disruption of alphavbeta3/focal adhesion kinase/phosphatidylinositol 3-kinase/Akt survival cascade and subsequent initiation of the procaspase-3 apoptotic signalling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938806 | PMC |
http://dx.doi.org/10.1111/j.1476-5381.2010.00781.x | DOI Listing |
Int J Biol Macromol
March 2023
Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul 96203-900, Brazil.
Despite advances in treating patients with melanoma, there are still many treatment challenges to overcome. Studies with snake venom-derived proteins/peptides describe their binding potential, and inhibition of some proliferative mechanisms in melanoma. The combined use of these compounds with current therapies could be the strategic gap that will help us discover more effective treatments for melanoma.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2017
Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City, Taiwan; Department of Neurological Surgery, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan City, Taiwan. Electronic address:
Current therapies available for the treatment of human osteosarcoma, an aggressive bone tumor, are insufficient. To examine an alternative approach of integrin-based anti-osteosacoma strategy, acurhagin-C, a Glu-Cys-Asp (ECD)-disintegrin, was isolated and evaluated for its application in combination with two potent inhibitors of basic fibroblast growth factor (bFGF) and interleukin-8 (IL-8). The investigation of human osteosarcoma MG-63 cells pre-incubated with a FGF receptor-1 (FGFR-1) blocker AZD4547, a CXC-chemokine receptor-1/-2 (CXCR1/2) antagonist reparixin, and acurhagin-C via two given modes of separation and combination was executed.
View Article and Find Full Text PDFMatrix Biol
April 2013
Chang Gung University of Science and Technology, Kwei-Shan, Tao-Yuan, Taiwan.
Acurhagin-C, a Glu-Cys-Asp (ECD)-disintegrin from Agkistrodon acutus venom, has been reported as an endothelial apoptosis inducer, previously. Here we further evaluate its potential applications in cancer therapy. In vitro assays indicated that acurhagin-C not only may influence the cell viability at higher concentration, but also can potently and dose-dependently decrease cell proliferation in murine B16-F10 melanoma.
View Article and Find Full Text PDFBr J Pharmacol
July 2010
Department of Nutrition and Health Sciences, Chang-Gung Institute of Technology, Kwei-Shan, Tao-Yuan, Taiwan.
Background And Purpose: Acurhagin, a member of versatile metalloproteinase disintegrins from Agkistrodon acutus venom, has been identified as a platelet aggregation inhibitor, previously. Here, acurhagin-C, the C-terminal Glu-Cys-Asp (ECD)-containing fragment of acurhagin, was evaluated for its biological activities and potential applications in anti-angiogenic therapy.
Experimental Approach: Human umbilical vein endothelial cells (HUVECs) were treated with acurhagin-C to assay effects on viability, apoptosis, adhesion, migration, invasion, proliferation and angiogenesis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!