Background And Purpose: The overexpression of epidermal growth factor receptor (EGFR) and its mutated variant EGFRvIII occurs in 50% of glioblastoma multiforme. We developed antibody fragments against EGFR/EGFRvIII for molecular imaging and/or therapeutic targeting applications.

Experimental Approach: An anti-EGFR/EGFRvIII llama single-domain antibody (EG(2)) and two higher valency format constructs, bivalent EG(2)-hFc and pentavalent V2C-EG(2) sdAbs, were analysed in vitro for their binding affinities using surface plasmon resonance and cell binding studies, and in vivo using pharmacokinetic, biodistribution, optical imaging and fluorescent microscopy studies.

Key Results: Kinetic binding analyses by surface plasmon resonance revealed intrinsic affinities of 55 nM and 97 nM for the monovalent EG(2) to immobilized extracellular domains of EGFR and EGFRvIII, respectively, and a 10- to 600-fold increases in apparent affinities for the multivalent binders, V2C-EG(2) and EG(2)-hFc, respectively. In vivo pharmacokinetic and biodistribution studies in mice revealed plasma half-lives for EG(2), V2C-EG(2) and EG(2)-hFc of 41 min, 80 min and 12.5 h, respectively, as well as a significantly higher retention of EG(2)-hFc compared to the other two constructs in EGFR/EGFRvIII-expressing orthotopic brain tumours, resulting in the highest signal in the tumour region in optical imaging studies. Time domain volumetric optical imaging fusion with high-resolution micro-computed tomography of microvascular brain network confirmed EG(2)-hFc selective accumulation/retention in anatomically defined tumour regions.

Conclusions: Single domain antibodies can be optimized for molecular imaging applications by methods that improve their apparent affinity and prolong plasma half-life and, at the same time, preserve their ability to penetrate tumour parenchyma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936006PMC
http://dx.doi.org/10.1111/j.1476-5381.2010.00742.xDOI Listing

Publication Analysis

Top Keywords

molecular imaging
12
optical imaging
12
brain tumours
8
surface plasmon
8
plasmon resonance
8
vivo pharmacokinetic
8
pharmacokinetic biodistribution
8
v2c-eg2 eg2-hfc
8
imaging
6
eg2-hfc
5

Similar Publications

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

Objectives: we evaluated the hypothesis that level of ctHPVDNA on the first postoperative day (POD-1); and at 15 days (POD-15) could be associated with the need for adjuvant therapy and the presence of recurrence.

Materials And Methods: this is a prospective observational study on biomarkers, focusing on the longitudinal monitoring of ctHPVDNA in a cohort of HPV-OPSCC patients undergoing TORS. Blood samples were collected according to the following schema: (1) pretreatment; (2) on first postoperative day (POD 1); and (3) at 15 days (POD 15).

View Article and Find Full Text PDF

There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system.

View Article and Find Full Text PDF

The process of viral entry into host cells is crucial for the establishment of infection and the determination of viral pathogenicity. A comprehensive understanding of entry pathways is fundamental for the development of novel therapeutic strategies. Standard techniques for investigating viral entry include confocal microscopy and flow cytometry, both of which provide complementary qualitative and quantitative data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!