Note: Rigid holder to host and bend a crystal for multiple volume reflection of a particle beam.

Rev Sci Instrum

INFN Section of Ferrara, Via Saragat 1/C, I-44100 Ferrara, Italy.

Published: June 2010

A holder to lodge and bend a silicon crystal to excite multivolume reflection of a high-energy particle beam has been designed and fabricated. A mechanically robust and stable structure fastens a crystal at best condition for experiments. The holder has allowed the observation of 12-time repeated volume reflection with very high efficiency. We detail the most important features behind the construction of the holder together with the characterization of the crystal being bent by the holder.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3443320DOI Listing

Publication Analysis

Top Keywords

volume reflection
8
particle beam
8
holder
5
note rigid
4
rigid holder
4
holder host
4
host bend
4
crystal
4
bend crystal
4
crystal multiple
4

Similar Publications

Background: Splenic stiffness is a potential imaging marker of portal hypertension. Normative spleen stiffness values are needed to define diagnostic thresholds.

Objective: To report stiffness measurements of the spleen in healthy children undergoing liver magnetic resonance (MR) elastography across MRI vendors and field strengths.

View Article and Find Full Text PDF

The application of antimicrobial surfaces requires proof of their effectivity by methods in laboratories. One of the most common test methods is ISO 22196:2011, which represents a simple and inexpensive protocol by applying the bacterial suspension with known volume and concentration covered under a polyethylene film on the surfaces. The incubation is then conducted under defined humidity conditions for 24 h.

View Article and Find Full Text PDF

Background: In proton radiotherapy, the steep dose deposition profile near the end of the proton's track, the Bragg peak, ensures a more conformed deposition of dose to the tumor region when compared with conventional radiotherapy while reducing the probability of normal tissue complications. However, uncertainties, as in the proton range, patient geometry, and positioning pose challenges to the precise and secure delivery of the treatment plan (TP). In vivo range determination and dose distribution are pivotal for mitigation of uncertainties, opening the possibility to reduce uncertainty margins and for adaptation of the TP.

View Article and Find Full Text PDF

Background And Objective: N,N-Dimethyltryptamine (DMT) is currently being studied for its therapeutic potential in various psychiatric disorders. An understanding of its pharmacokinetics (PK) is essential to determine appropriate dose ranges in future clinical studies. We conducted a systematic literature review on the PK of DMT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!