Large molecules, whose thermal fluctuations sample a complex energy landscape, exhibit motions on an extended range of space and time scales. Principal component analysis (PCA) is often used to extract dominant motions that in proteins are typically domain motions. These motions are captured in the large eigenvalue (leading) principal components. There is also information in the small eigenvalues, arising from approximate linear dependencies among the coordinates. These linear dependencies suggest that instead of using all the atom coordinates to represent a trajectory, it should be possible to use a reduced set of coordinates with little loss in the information captured by the large eigenvalue principal components. In this work, methods that can monitor the correlation (overlap) between a reduced set of atoms and any number of retained principal components are introduced. For application to trajectory data generated by simulations, where the overall translational and rotational motion needs to be eliminated before PCA is carried out, some difficulties with the overlap measures arise and methods are developed to overcome them. The overlap measures are evaluated for a trajectory generated by molecular dynamics for the protein adenylate kinase, which consists of a stable, core domain, and two more mobile domains, referred to as the LID domain and the AMP-binding domain. The use of reduced sets corresponding, for the smallest set, to one-eighth of the alpha carbon (CA) atoms relative to using all the CA atoms is shown to predict the dominant motions of adenylate kinase. The overlap between using all the CA atoms and all the backbone atoms is essentially unity for a sum over PCA modes that effectively capture the exact trajectory. A reduction to a few atoms (three in the LID and three in the AMP-binding domain) shows that at least the first principal component, characterizing a large part of the LID-binding and AMP-binding motion, is well described. Based on these results, the overlap criterion should be applicable as a guide to postulating and validating coarse-grained descriptions of generic biomolecular assemblies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3435207 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!