Molecular dynamics simulations of NO-doped Ar solid upon Rydberg photoexcitation of the impurity have been carried out taking into account angular dependent potential energy surfaces (PESs) in the ground and excited states. To go beyond isotropic potentials simulations, the effects of anisotropy of potentials on the structure, dynamics, and energetics are investigated by taking into account two cases, namely, the whole PESs and the isotropic parts. Results have been compared to those obtained in previous works for similar NO-doped rare gas systems. Radial distribution functions (RDF) for the ground and excited state indicate that for both cases the shell structure of the lattice is kept ordered and is characterized by well-defined bands. No influence of the anisotropy of potentials has been detected in the RDFs since the anisotropy is rather manifested at short distances. The well part, which has been proven to be unimportant for the dynamics in previous works, arises here to be important for the right simulation of the spectrum. In general, our results show a reasonable agreement with respect to the experimental values for the dynamics and energetics when ab initio potentials are used, although better results can be obtained if higher level ab initio PESs are used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp101181v | DOI Listing |
J Phys Chem Lett
October 2024
5th Institute of Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
J Phys Chem A
September 2024
State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
The first high-resolution translational spectroscopy studies of D atom photoproducts following excitation to the Rydberg states of DS are reported. Excitation at wavelengths λ ∼ 139.1 nm reveals an unusual 'inverse' isotope effect; the B(3←2) Rydberg state of DS predissociates much faster than its counterpart in HS.
View Article and Find Full Text PDFJ Chem Phys
July 2024
Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
Over the years, theoretical calculations and scalable computer simulations have complemented ultrafast experiments, as they offer the advantage of overcoming experimental restrictions and having access to the whole dynamics. This synergy between theory and experiment promises to yield a deeper understanding of photochemical processes, offering valuable insights into the behavior of complex systems at the molecular level. However, the ability of theoretical models to predict ultrafast experimental outcomes has remained largely unexplored.
View Article and Find Full Text PDFNature
June 2024
Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
Chiral molecules, used in applications such as enantioselective photocatalysis, circularly polarized light detection and emission and molecular switches, exist in two geometrical configurations that are non-superimposable mirror images of each other. These so-called (R) and (S) enantiomers exhibit different physical and chemical properties when interacting with other chiral entities. Attosecond technology might enable influence over such interactions, given that it can probe and even direct electron motion within molecules on the intrinsic electronic timescale and thereby control reactivity.
View Article and Find Full Text PDFJ Phys Chem A
May 2024
State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
HS is being detected in the atmospheres of ever more interstellar bodies, and photolysis is an important mechanism by which it is processed. Here, we report H Rydberg atom time-of-flight measurements following the excitation of HS molecules to selected rotational (') levels of the B Rydberg state associated with the strong absorption feature at wavelengths of λ ∼ 129.1 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!