It has been proposed that gamma-protocadherins (Pcdh-gammas) are involved in the establishment of specific patterns of neuronal connectivity. Contrary to the other Pcdh-gammas, which are expressed in the embryo, Pcdh-gammaC5 is expressed postnatally in the brain, coinciding with the peak of synaptogenesis. We have developed an antibody specific for Pcdh-gammaC5 to study the expression and localization of Pcdh-gammaC5 in brain. Pcdh-gammaC5 is highly expressed in the olfactory bulb, corpus striatum, dentate gyrus, CA1 region of the hippocampus, layers I and II of the cerebral cortex, and molecular layer of the cerebellum. Pcdh-gammaC5 is expressed in both neurons and astrocytes. In hippocampal neuronal cultures, and in the absence of astrocytes, a significant percentage of synapses, more GABAergic than glutamatergic, have associated Pcdh-gammaC5 clusters. Some GABAergic axons show Pcdh-gammaC5 in the majority of their synapses. Nevertheless, many Pcdh-gammaC5 clusters are not associated with synapses. In the brain, significant numbers of Pcdh-gammaC5 clusters are located at contact points between neurons and astrocytes. Electron microscopic immunocytochemistry of the rat brain shows that 1) Pcdh-gammaC5 is present in some GABAergic and glutamatergic synapses both pre- and postsynaptically; 2) Pcdh-gammaC5 is also extrasynaptically localized in membranes and in cytoplasmic organelles of neurons and astrocytes; and 3) Pcdh-gammaC5 is also localized in perisynaptic astrocyte processes. The results support the notions that 1) Pcdh-gammaC5 plays a role in synaptic specificity and/or synaptic maturation and 2) Pcdh-gammaC5 is involved in neuron-neuron synaptic interactions and in neuron-astrocyte interactions, including perisynaptic neuron-astrocyte interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209968 | PMC |
http://dx.doi.org/10.1002/cne.22390 | DOI Listing |
J Neurochem
June 2024
Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China.
Neuronal hyperactivity induced by β-amyloid (Aβ) is an early pathological feature in Alzheimer's disease (AD) and contributes to cognitive decline in AD progression. However, the underlying mechanisms are still unclear. Here, we revealed that Aβ increased the expression level of synaptic adhesion molecule protocadherin-γC5 (Pcdh-γC5) in a Ca-dependent manner, associated with aberrant elevation of synapses in both Aβ-treated neurons in vitro and the cortex of APP/PS1 mice in vivo.
View Article and Find Full Text PDFJ Comp Neurol
April 2020
Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.
It has been proposed that the combinatorial expression of γ-protocadherins (Pcdh-γs) and other clustered protocadherins (Pcdhs) provides a code of molecular identity and individuality to neurons, which plays a major role in the establishment of specific synaptic connectivity and formation of neuronal circuits. Particular attention has been directed to the Pcdh-γ family, for which experimental evidence derived from Pcdh-γ-deficient mice shows that they are involved in dendrite self-avoidance, synapse development, dendritic arborization, spine maturation, and prevention of apoptosis of some neurons. Moreover, a triple-mutant mouse deficient in the three C-type members of the Pcdh-γ family (Pcdh-γC3, Pcdh-γC4, and Pcdh-γC5) shows a phenotype similar to the mouse deficient in whole Pcdh-γ family, indicating that the latter is largely due to the absence of C-type Pcdh-γs.
View Article and Find Full Text PDFJ Neurosci
September 2017
Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen 361005 Fujian, China,
Synaptic dysfunction and neuronal excitatory/inhibitory imbalance have been implicated in Alzheimer's disease (AD) pathogenesis. Although intensive studies have been focused on the excitatory synaptic system, much less is known concerning the mechanisms mediating inhibitory synaptic dysfunction in AD. We reported previously that protocadherin-γC5 (Pcdh-γC5), a member of clustered Pcdh-γ subfamily of cadherin-type synaptic adhesion proteins, functions to promote GABAergic synaptic transmission.
View Article and Find Full Text PDFArch Biochem Biophys
November 2015
Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan. Electronic address:
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) is a Ser/Thr protein phosphatase that belongs to the PPM family. It is important to identify an endogenous regulator of CaMKP. Using an Escherichia coli two-hybrid screening method, we identified the C-terminal cytoplasmic fragment of protocadherin γ subfamily C5 (Pcdh-γC5), which was generated by intracellular processing, as a CaMKP-binding protein.
View Article and Find Full Text PDFJ Neurosci
August 2012
Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA.
We have found that the γ2 subunit of the GABA(A) receptor (γ2-GABA(A)R) specifically interacts with protocadherin-γC5 (Pcdh-γC5) in the rat brain. The interaction occurs between the large intracellular loop of the γ2-GABA(A)R and the cytoplasmic domain of Pcdh-γC5. In brain extracts, Pcdh-γC5 coimmunoprecipitates with GABA(A)Rs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!