Colon samples with both healthy and cancerous regions have been imaged in diffuse light and backscattering geometry by using a Mueller imaging polarimeter. The tumoral parts at the early stage of cancer are found to be less depolarizing than the healthy ones. This trend clearly shows that polarimetric imaging may provide useful contrasts for optical biopsy. Moreover, both types of tissues are less depolarizing when the incident polarization is linear rather than circular. However, to really optimize an optical biopsy technique based on polarimetric imaging a realistic model is needed for polarized light scattering by tissues. Our approach to this goal is based on numerical Monte-Carlo simulations of polarized light propagation in biological tissues modeled as suspensions of monodisperse spherical scatterers representing the cell nuclei. The numerical simulations were validated by comparison with measurements on aqueous polystyrene sphere suspensions, which are commonly used as tissue phantoms. Such systems exhibit lower depolarization for incident linear polarization in the Rayleigh scattering regime, i.e. when the sphere diameters are smaller than the wavelength, which is obviously not the case for cell nuclei. In contrast, our results show that this behaviour can also be seen for "large" scatterers provided the optical index contrast between the spheres and the surrounding medium is small enough, as it is likely to be the case in biological tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.18.010200DOI Listing

Publication Analysis

Top Keywords

polarimetric imaging
8
optical biopsy
8
polarized light
8
biological tissues
8
cell nuclei
8
mueller matrix
4
imaging
4
matrix imaging
4
imaging human
4
human colon
4

Similar Publications

The nanoscale chiral arrangement in a bicomponent organic material system comprising donor and acceptor small molecules is shown to depend on the thickness of a film that is responsive to chiral light in an optoelectronic device. In this bulk heterojunction, a previously unreported chiral bis(diketopyrrolopyrrole) derivative was combined with an achiral non-fullerene acceptor. The optical activity of the chiral compound is dramatically different in the pure material and the composite, showing how the electron acceptor influences the donor's arrangement compared with the pure molecule.

View Article and Find Full Text PDF

Recent advancements in novel fiber-coupled and portable terahertz (THz) spectroscopic imaging technology have accelerated applications in nondestructive testing (NDT). Although the polarization information of THz waves can play a critical role in material characterization, there are few demonstrations of polarization-resolved THz imaging as an NDT modality due to the deficiency of such polarimetric imaging devices. In this paper, we have inspected industrial carbon fiber composites using a portable and handheld imaging scanner in which the THz polarizations of two orthogonal channels are simultaneously captured by two photoconductive antennas.

View Article and Find Full Text PDF

A Reconfigurable Polarimetric Photodetector Based on the MoS/PdSe Heterostructure with a Charge-Trap Gate Stack.

Nanomaterials (Basel)

December 2024

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Besides the intensity and wavelength, the ability to analyze the optical polarization of detected light can provide a new degree of freedom for numerous applications, such as object recognition, biomedical applications, environmental monitoring, and remote sensing imaging. However, conventional filter-integrated polarimetric sensing systems require complex optical components and a complicated fabrication process, severely limiting their on-chip miniaturization and functionalities. Herein, the reconfigurable polarimetric photodetection with photovoltaic mode is developed based on a few-layer MoS/PdSe heterostructure channel and a charge-trap structure composed of AlO/HfO/AlO (AHA)-stacked dielectrics.

View Article and Find Full Text PDF

Polarization-resolved second harmonic generation (pSHG) is a label-free method that has been used in a range of tissue types to describe collagen orientation. In this work, we develop pSHG analysis techniques for investigating cranial bone collagen assembly defects occurring in a mouse model of hypophosphatasia (HPP), a metabolic bone disease characterized by a lack of bone mineralization. After observing differences in bone collagen lamellar sheet structures using scanning electron microscopy, we found similar alterations with pSHG between the healthy and HPP mouse collagen lamellar sheet organization.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in nanotechnology have enabled the commercial availability of polarization image sensors, enhancing the retrieval of linear Stokes parameters in polarized light microscopy.
  • The proposed technique allows for real-time retrieval of the 3×3 Mueller matrix by encoding polarization states into the color channels and using a color polarization sensor in the microscope.
  • This study is the first to demonstrate snapshot retrieval of the Mueller matrix in polarized light microscopy, combining division of focal plane sensing and color encoding methods.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!