In this paper we present the analysis, optimization and implementation of several Stokes polarimeter configurations based on a set-up including two variable retarders. The polarimeter analysis is based on the Mueller-Stokes formalism, and as a consequence, it is suitable to deal with depolarized light. Complete Stokes polarimeters are optimized by minimizing the amplification of simulated errors into the final solution. Different indicators useful to achieve this aim, as the condition number or the equally weighted variance, are compared in this paper. Moreover, some of the optimized polarimeters are experimentally implemented and it is studied the influence of small deviations from the theoretical ones on the amplification of the Stokes component error. In addition, the benefit of using incomplete polarimeters, when detecting specific ranges of states of polarization, is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.18.009815DOI Listing

Publication Analysis

Top Keywords

stokes polarimeter
8
variable retarders
8
optimization performance
4
performance criteria
4
stokes
4
criteria stokes
4
polarimeter based
4
based variable
4
retarders paper
4
paper analysis
4

Similar Publications

Magnetic circularly polarized luminescence (MCPL) spectroscopy is widely used to evaluate the luminescence dissymmetry factor (g) for compounds. However, even for the same instrument and operating conditions, the measured g is affected by errors associated with sources such as baseline drift and spectral noise, and so the range of variation of g must be considered when comparing values, which requires multiple measurements for the same sample. Also, because many samples undergo photodegradation under excitation light, it is difficult to accumulate and average spectra for samples with weak MCPL signals to improve the signal-to-noise ratio.

View Article and Find Full Text PDF

Achromatic Full Stokes Polarimetry Metasurface for Full-Color Polarization Imaging in the Visible Range.

Nano Lett

October 2024

National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P.R. China.

Article Synopsis
  • - Metasurfaces enable compact and real-time polarimetry, but their narrow bandwidth limits use in polychromatic scenes, leading to loss of spectral information.
  • - This study presents an achromatic polarimeter using four polarization-dependent metalenses, which achieves broad wavelength coverage from 450 to 650 nm with a relative bandwidth of about 0.364 for Stokes imaging.
  • - The design significantly outperformed current technologies, showing lower reconstruction errors and validating its full-color, full-polarization capabilities with a customized object, enhancing practical applications in polarization imaging.
View Article and Find Full Text PDF

Wafer-Scale Patterning Integration of Chiral 3D Perovskite Single Crystals toward High-Performance Full-Stokes Polarimeter.

J Am Chem Soc

July 2024

Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Chiral three-dimensional (3D) perovskites exhibit exceptional optoelectronic characteristics and inherent chiroptical activity, which may overcome the limitations of low-dimensional chiral optoelectronic devices and achieve superior performance. The integrated chip of high-performance arbitrary polarized light detection is one of the aims of chiral optoelectronic devices and may be achieved by chiral 3D perovskites. Herein, we first fabricate the wafer-scale integrated full-Stokes polarimeter by the synergy of unprecedented chiral 3D perovskites (/-PyEA)PbBr and one-step capillary-bridge assembly technology.

View Article and Find Full Text PDF

Polarimeters for the Detection of Anisotropy from Reflectance.

Micromachines (Basel)

June 2024

School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

Polarimetry is used to determine the Stokes parameters of a laser beam. Once all four S0,1,2,3 parameters are determined, the state of polarisation is established. Upon reflection of a laser beam with the defined polarisation state, the directly measured parameters can be used to determine the optical properties of the surface, which modify the -state upon reflection.

View Article and Find Full Text PDF

Polarization detection and imaging technologies have attracted significant attention for their extensive applications in remote sensing, biological diagnosis, and beyond. However, previously reported polarimeters heavily relied on polarization-sensitive materials and pre- established mapping relationships between the Stokes parameters and detected light intensities. This dependence, along with fabrication and detection errors, severely constrain the working waveband and detection precision.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!