Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation.

Opt Express

Centre of Expertise in Photonics, Institute for Photonics & Advanced Sensing, School of Chemistry & Physics, University of Adelaide, Adelaide, SA 5005, Australia.

Published: April 2010

A model for the fluorescence sensing properties of small-core high-refractive-index fibers (optical nanowires) is developed and compared quantitatively with experiment. For the first time, higher-order modes and loss factors relevant to optical nanowires are included, which allows the model to be compared effectively with experiment via the use of fluorophore filled suspended optical nanowires. Numerical results show that high-index materials are beneficial for fluorescence-based sensing. However, both numerical and experimental results show that the fluorescence signal is relatively insensitive to core size, except for low concentration sensing where nanoscale fiber cores are advantageous due to the increased evanescent field power.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.18.009474DOI Listing

Publication Analysis

Top Keywords

optical nanowires
16
fluorescence-based sensing
8
optical
4
sensing optical
4
nanowires
4
nanowires generalized
4
generalized model
4
model experimental
4
experimental validation
4
validation model
4

Similar Publications

The outstanding performance of superconducting nanowire single-photon detectors (SNSPDs) has expanded their application areas from quantum technologies to astronomy, space communication, imaging, and LiDAR. As a result, there has been a surge in demand for these devices, that commercial products cannot readily meet. Consequently, more research and development efforts are being directed towards establishing in-house SNSPD manufacturing, leveraging existing nano-fabrication capabilities that can be customized and fine-tuned for specific needs.

View Article and Find Full Text PDF

An Efficient and Flexible Bifunctional Dual-Band Electrochromic Device Integrating with Energy Storage.

Nanomicro Lett

December 2024

Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.

Dual-band electrochromic devices capable of the spectral-selective modulation of visible (VIS) light and near-infrared (NIR) can notably reduce the energy consumption of buildings and improve the occupants' visual and thermal comfort. However, the low optical modulation and poor durability of these devices severely limit its practical applications. Herein, we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life, but also displays a high capacitance and a high energy recycling efficiency of 51.

View Article and Find Full Text PDF

Tightly confined plasmons in metal nanogaps are highly sensitive to surface inhomogeneities and defects due to the nanoscale optical confinement, but tracking and monitoring their location is hard. Here, we probe a 1-D extended nanocavity using a plasmonic silver nanowire (AgNW) on mirror geometry. Morphological changes inside the nanocavity are induced locally using optical excitation and probed locally through simultaneous measurements of surface enhanced Raman scattering (SERS) and dark-field spectroscopy.

View Article and Find Full Text PDF

In recent years, visible-light driven photocatalysts present a significant role in different photocatalytic performances. Herein, a novel Z-scheme graphitic carbon nitride nanosheet/polyaniline nanowire (2D/1D CN/PAni) nanocomposite decorated on activated carbon (AC) support was synthesized by solution mixing combined with a calcination process for removal of CR dye under LED irradiation. The chemical, nanostructure, surface and optical properties of as-prepared nanocomposites were analyzed by different spectroscopic and microscopic techniques.

View Article and Find Full Text PDF

Nanoscale light sources are demanded vigorously due to rapid development in photonic integrated circuits (PICs). III-V semiconductor nanowire (NW) lasers have manifested themselves as indispensable components in this field, associated with their extremely compact footprint and ultra-high optical gain within the 1D cavity. In this study, the carrier concentrations of indium phosphide (InP) NWs are actively controlled to modify their emissive properties at room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!