AI Article Synopsis

Article Abstract

Continuous-wave (CW) and passively Q-switched operations of LD-end-pumped Nd:Gd(3)Al(x)Ga(5-x)O(12) (Nd:GAGG) laser at 1062 nm were reported. The highest CW output power of 5.7 W was obtained, corresponding to an optical conversion efficiency and slope efficiency of 51.0% and 54.5%, respectively. The CW output efficiency of Nd:GAGG laser is comparable and even better than that of Nd:GGG. The passively Q-switched output was realized for the first time to our knowledge. In addition, a maximum output power of 1.12 W, a maximum pulse repetition rate of 39 kHz and a minimum pulse width of 6 ns were obtained by using Cr(4+):YAG as the saturable absorber.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.18.007584DOI Listing

Publication Analysis

Top Keywords

passively q-switched
12
ndgagg laser
12
continuous-wave passively
8
output power
8
laser
4
q-switched laser
4
laser performance
4
performance ld-end-pumped
4
ld-end-pumped 1062
4
1062 ndgagg
4

Similar Publications

We developed a 915-nm pumped, passively Q-switched 976-nm ytterbium all-fiber laser with an average output power of 4.3 W. The laser utilizes a 16-cm Yb gain fiber, passively Q-switched by a 1.

View Article and Find Full Text PDF

Janus transition metal disulfide (TMD) monolayers have two distinct carbon surfaces that break the inherent ground external mirror symmetry. When compared to traditional TMD materials, Janus TMDs not only inherit the advantages of traditional TMDs but also have new characteristics that are different from those of traditional TMDs. This paper describes the development of a stable passive Q-switched ytterbium-doped fiber laser (YDFL) with operating wavelengths of 1032.

View Article and Find Full Text PDF

We report on the operation of an efficient Tm,Ho:YLF depressed cladding, channeled waveguide laser in both continuous-wave (CW) and passively Q-switched (PQS) regimes, producing laser emission at the wavelength of 2.05 µm. The 70-µm diameter depressed cladding waveguide, fabricated using femtosecond laser inscription, had a low propagation loss value of 0.

View Article and Find Full Text PDF

We report on the laser performance of Nd,Sc:YAG (yttrium aluminum garnet), for the first time, to our knowledge. In this study, 10 at.% Sc ions were doped into the Nd:YAG crystal to form the Nd,Sc:YAG crystal, which improves the saturation flux while nearly maintaining the excellent properties of the Nd:YAG crystal.

View Article and Find Full Text PDF
Article Synopsis
  • - We developed a new 2 µm nanosecond solid-state laser using a unique heterojunction saturable absorber, achieving stable pulses at a low pump power of 12.69 W.
  • - The laser emits pulses with a width of 818 ns and a maximum energy of 15.48 µJ, showing better performance compared to previous technologies.
  • - This innovative laser technology has potential applications in fields like atmospheric monitoring and lidar, offering significant advancements in mid-infrared pulsed laser systems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!