We report on a novel type of Bi-doped crystal that exhibits ultrabroadband photoluminescence in the near infrared (NIR). Emission centers can be generated and degenerated reversibly by annealing the material in CO atmosphere and air, respectively, indicating that emission is related to the presence of Bi-species in low valence states. Correlating static and dynamic excitation and emission data with the size and charge of available lattice sites suggests that two types of Bi(0)-species, each located on one of the two available Ba(2+) lattice sites, are responsible for NIR photoemission. This is further confirmed by the absence of NIR emission in polycrystalline Ca(2)P(2)O(7):Bi and Sr(2)P(2)O(7):Bi. Excitation is assigned to transitions between the doubly degenerated ground state (4)S(3/2) and the degenerated excited levels (2)D(3/2), (2)D(5/2) and (2)P(1/2), respectively. NIR emission is attributed to (2)D(3/2)?(4)S(3/2). The NIR emission center can coexist with Bi(2+) species. Then, also Bi(2+) is accommodated on one of the two Ba(2+)-sites. Energy transfer between Bi(2+) ions occurs within a critical distance of 25.9 A.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.18.012852DOI Listing

Publication Analysis

Top Keywords

nir emission
16
lattice sites
8
emission
6
nir
5
broadband nir
4
nir photoluminescence
4
photoluminescence bi-doped
4
bi-doped ba2p2o7
4
ba2p2o7 crystals
4
crystals insights
4

Similar Publications

We report a high peak power mid-infrared (MIR) source via efficient optical parametric generation (OPG) in a piece of 50-mm-long MgO: PPLN crystal pumped by using a near-infrared (NIR) narrow-band picosecond laser source. The highest peak power of the idler pulse can reach ∼109.86 kW with a duration of ∼7.

View Article and Find Full Text PDF

Gold nanoclusters (Au NCs) protected by molecular ligands represent a new class of second-generation near-infrared (NIR-II) luminescent materials that have been widely studied. However, the photoluminescence efficiencies of most NIR-II emitting Au NCs in aqueous solution are generally lower than 0.2%, and to fully exploit the advantages of AuNCs in the NIR-II region, improving their photoluminescence efficiency has become an urgent need.

View Article and Find Full Text PDF

The AlO: Cr light-converting materials were successfully synthesized via co-precipitation, resulting in a grain size ranging from 100 to 400 nm. Under excitation wavelengths spanning from 360 to 650 nm, a distinct near-infrared (NIR) emission at 695 nm was observed. Through optimization, it has been established that a Cr doping concentration of 1.

View Article and Find Full Text PDF

Plasmonic heating by indium tin oxide nanoparticles: spectrally enabling decoupled near-infrared theranostics.

Nanoscale

January 2025

Nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain.

All-optical theranostic systems are sought after in nanomedicine, since they combine in a single platform therapeutic and diagnostic capabilities. Commonly in these systems the therapeutic and diagnostic/imaging functions are accomplished with plasmonic photothermal agents and luminescent nanoparticles (NPs), respectively. For maximized performance and minimized side effects, these two modalities should be independently activated, , in a decoupled way, using distinct near infrared (NIR) wavelengths: a radiation window wherein photon-tissue interaction is reduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!