We present the investigation of nonlinear mirror modelocking (NLM) of a bounce amplifier laser. This technique, a potential rival to SESAM modelocking, uses a nonlinear crystal and a dichroic mirror to passively modelock a Nd:GdVO(4) slab bounce amplifier operating at 1063nm. At 11.3W, we present the highest power achieved using the NLM technique, using type-II phase-matched KTP, with a pulse duration of 57ps. Using type-I phase-matched BiBO, modelocking was achieved with a shorter pulse duration of 5.7ps at an average power of 7.1W.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.18.012663 | DOI Listing |
Nat Commun
January 2025
Humboldt Centre for Nano- and Biophotonics, Institute for Light and Matter, Department of Chemistry and Biochemistry, University of Cologne, Köln, Germany.
Non-linearities in organic exciton-polariton microcavities represent an attractive platform for quantum devices. However, progress in this area hinges on the development of material platforms for high-performance polariton lasing, scalable and sustainable fabrication, and ultimately strategies for electrical pumping. Here, we show how introducing Schlieren texturing and a rough intra-cavity topography in a liquid crystalline conjugated polymer enables strong in-plane confinement of polaritons and drastic enhancement of the lasing properties.
View Article and Find Full Text PDFInfant Ment Health J
January 2025
Education Department, Tufts University, Medford, Massachusetts, USA.
This blended pilot-empirical and theoretical manuscript documents a reflective journey undertaken by a group of early childhood teacher educators located across different regions of the United States as they examined their course design, materials, and syllabi construction. Grounded in reflective practice, intersectionality, and critical pedagogy, their collaborative endeavor necessitated profound self-examination and recognition of oppressive structures inherent within the field and reproduced throughout course syllabi, thereby perpetuating societal inequities inside and outside the classroom context. Their iterative, evolving effort resembled a reflective consultation group, marked by continuous self-reflection, challenging assumptions, and transforming actions, vividly portrayed in their vignettes.
View Article and Find Full Text PDFNat Commun
January 2025
School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China.
Heatwaves are commonly simplified as binary variables in epidemiological studies, limiting the understanding of heatwave-mortality associations. Here we conduct a multi-country study across 28 East Asian cities that employed the Cumulative Excess Heatwave Index (CEHWI), which represents excess heat accumulation during heatwaves, to explore the potentially nonlinear associations of daytime-only, nighttime-only, and day-night compound heatwaves with mortality from 1981 to 2010. Populations exhibited high adaptability to daytime-only and nighttime-only heatwaves, with non-accidental mortality risks increasing only at higher CEHWI levels (75th-90th percentiles).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematics, Pabna University of Science and Technology, Pabna, 6600, Bangladesh.
This research used a modified and extended auxiliary mapping method to examine the optical soliton solutions of the truncated time M-fractional paraxial wave equation. We employed the truncated time M-fractional derivative to eliminate the fractional order in the governing model. The few optical wave examples of the paraxial wave condition can assume an insignificant part in depicting the elements of optical soliton arrangements in optics and photonics for the investigation of different actual cycles, including the engendering of light through optical frameworks like focal points, mirrors, and fiber optics.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
HiLASE Centre, Institute of Physics of the Czech Academy of Sciences, Za Radnicí 828, 252 41 Dolní Břežany, Czechia.
We present an active alignment and stabilization control system for laser setups based on a thin-disk regenerative amplifier. This method eliminates power and pointing instability during the warm-up period and improves long-term stability throughout the entire operation. The alignment method is based on a four-mirror control system consisting of two motorized mirrors placed within the regenerative amplifier cavity, two additional motorized mirrors external to the amplifier cavity, and four camera detectors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!