Capsule endoscopy and balloon endoscopy, advanced modalities that now allow for full investigation of the entire small intestine, have revealed that non-steroidal anti-inflammatory drugs (NSAIDs) can cause a variety of abnormalities in the small intestine. Traditional NSAIDs can induce small intestinal injuries in over 50% of patients. Several studies have shown that the preventive effect of proton pump inhibitors does not extend to the small intestine, suggesting that concomitant therapy may be required to prevent small intestinal side effects associated with traditional NSAIDs use. Recently, several randomized controlled trials used capsule endoscopy to evaluate the preventive effect of certain drugs on NSAID-induced small intestinal injuries. These studies show that misoprostol and rebamipide have a preventive effect for NSAID-induced small intestinal mucosal injuries. However, these studies included only a small series of healthy volunteers and tested short-term NSAID treatment. Therefore, further extensive studies are clearly required to ascertain the beneficial effect of these drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000308361DOI Listing

Publication Analysis

Top Keywords

small intestinal
20
nsaid-induced small
12
capsule endoscopy
12
small intestine
12
small
9
traditional nsaids
8
intestinal injuries
8
injuries studies
8
intestinal
5
studies
5

Similar Publications

Alterations in Ileal Secretory Cells of The DSS-Induced Colitis Model Mice.

Acta Histochem Cytochem

December 2024

Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu, Fukuoka 807-8555, Japan.

Inflammatory bowel disease is triggered by abnormalities in epithelial barrier function and immunological responses, although its pathogenesis is poorly understood. The dextran sodium sulphate (DSS)-induced colitis model has been used to examine inflammation in the colon. Damage to mucosa primality occurs in the large intestine and scarcely in the small intestine.

View Article and Find Full Text PDF

Introduction: The enteric nervous system (ENS) in the wall of the gastrointestinal tract is complex and comprises many neurons, which are differentiated in terms of structure, function and neurochemistry. Neuregulin 1 (NRG 1) is one of the neuronal factors synthesised in the ENS about the distribution and functions of which relatively little is known. The present study is the first description of the distribution of NRG 1 in the ENS in various segments of the porcine small intestine.

View Article and Find Full Text PDF

Cymbopogon citratus showing nematicidal activity against Heligmosomoides polygyrus bakeri.

Rev Bras Parasitol Vet

January 2025

Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Campos dos Goytacazes, RJ, Brasil.

This paper describes a novel in vivo study of Cymbopogon citratus (lemon grass) to assess its anthelmintic activity. To this end, C57BL/6 mice were separated into three groups: G1: uninfected; G2: negative control infected with Heligmosomoides polygyrus bakeri and administered with 3% dimethyl sulfoxide (DMSO); and G3: infected with H. polygyrus bakeri and treated with C.

View Article and Find Full Text PDF

Intestinal Foxl1+ cell-derived CXCL12 maintains epithelial homeostasis by modulating cellular metabolism.

Int Immunol

January 2025

Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.

Several mesenchymal cell populations are known to regulate intestinal stem cell (ISC) self-renewal and differentiation. However, the influences of signaling mediators derived from mesenchymal cells other than ISC niche factors on epithelial homeostasis remain poorly understood. Here, we show that host and microbial metabolites, such as taurine and GABA, act on PDGFRαhigh Foxl1high sub-epithelial mesenchymal cells to regulate their transcription.

View Article and Find Full Text PDF

Machine learning and its specialized forms, such as Artificial Neural Networks and Convolutional Neural Networks, are increasingly being used for detecting and managing gastrointestinal conditions. Recent advancements involve using Artificial Neural Network models to enhance predictive accuracy for severe lower gastrointestinal (LGI) bleeding outcomes, including the need for surgery. To this end, artificial intelligence (AI)-guided predictive models have shown promise in improving management outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!