Interleukin-27 acts as multifunctional antitumor agent in multiple myeloma.

Clin Cancer Res

Department of Experimental and Laboratory Medicine, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy.

Published: August 2010

Purpose: Multiple myeloma (MM) derives from plasmablast/plasma cells that accumulate in the bone marrow. Different microenvironmental factors may promote metastatic dissemination especially to the skeleton, causing bone destruction. The balance between osteoclast and osteoblast activity represents a critical issue in bone remodeling. Thus, we investigated whether interluekin-27 (IL-27) may function as an antitumor agent by acting directly on MM cells and/or on osteoclasts/osteoblasts.

Experimental Design: The IL-27 direct antitumor activity on MM cells was investigated in terms of angiogenesis, proliferation, apoptosis, and chemotaxis. The IL-27 activity on osteoclast/osteoblast differentiation and function was also tested. In vivo studies were done using severe combined immunodeficient/nonobese diabetic mice injected with MM cell lines. Tumors from IL-27- and PBS-treated mice were analyzed by immunohistochemistry and PCR array.

Results: We showed that IL-27 (a) strongly inhibited tumor growth of primary MM cells and MM cell lines through inhibition of angiogenesis, (b) inhibited osteoclast differentiation and activity and induced osteoblast proliferation, and (c) damped in vivo tumorigenicity of human MM cell lines through inhibition of angiogenesis.

Conclusions: These findings show that IL-27 may represent a novel therapeutic agent capable of inhibiting directly MM cell growth as well as osteoclast differentiation and activity.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-10-0173DOI Listing

Publication Analysis

Top Keywords

cell lines
12
antitumor agent
8
multiple myeloma
8
lines inhibition
8
osteoclast differentiation
8
differentiation activity
8
activity
5
il-27
5
interleukin-27 acts
4
acts multifunctional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!