Essential role of the CBD1-CBD2 linker in slow dissociation of Ca2+ from the regulatory two-domain tandem of NCX1.

J Biol Chem

Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel.

Published: September 2010

In NCX proteins CBD1 and CBD2 domains are connected through a short linker (3 or 4 amino acids) forming a regulatory tandem (CBD12). Only three of the six CBD12 Ca(2+)-binding sites contribute to NCX regulation. Two of them are located on CBD1 (K(d) = approximately 0.2 microM), and one is on CBD2 (K(d) = approximately 5 microM). Here we analyze how the intrinsic properties of individual regulatory sites are affected by linker-dependent interactions in CBD12 (AD splice variant). The three sites of CBD12 and CBD1 + CBD2 have comparable K(d) values but differ dramatically in their Ca(2+) dissociation kinetics. CBD12 exhibits multiphasic kinetics for the dissociation of three Ca(2+) ions (k(r) = 280 s(-1), k(f) = 7 s(-1), and k(s) = 0.4 s(-1)), whereas the dissociation of two Ca(2+) ions from CBD1 (k(f) = 16 s(-1)) and one Ca(2+) ion from CBD2 (k(r) = 125 s(-1)) is monophasic. Insertion of seven alanines into the linker (CBD12-7Ala) abolishes slow dissociation of Ca(2+), whereas the kinetic and equilibrium properties of three Ca(2+) sites of CBD12-7Ala and CBD1 + CBD2 are similar. Therefore, the linker-dependent interactions in CBD12 decelerate the Ca(2+) on/off kinetics at a specific CBD1 site by 50-80-fold, thereby representing Ca(2+) "occlusion" at CBD12. Notably, the kinetic and equilibrium properties of the remaining two sites of CBD12 are "linker-independent," so their intrinsic properties are preserved in CBD12. In conclusion, the dynamic properties of three sites are specifically modified, conserved, diversified, and integrated by the linker in CBD12, thereby generating a wide range dynamic sensor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2934676PMC
http://dx.doi.org/10.1074/jbc.M110.127001DOI Listing

Publication Analysis

Top Keywords

dissociation ca2+
12
cbd1 cbd2
12
cbd12
10
ca2+
9
slow dissociation
8
intrinsic properties
8
linker-dependent interactions
8
interactions cbd12
8
three sites
8
sites cbd12
8

Similar Publications

Infected alveolar bone defects pose challenging clinical issues due to disrupted intrinsic healing mechanisms. Thus, the employment of advanced biomaterials enabling the modulation of several aspects of bone regeneration is necessary. This study investigated the effect of multi-functional nanoparticles on anti-inflammatory/osteoconductive characteristics and bone repair in the context of inflamed bone abnormalities.

View Article and Find Full Text PDF

Introduction: Adrenergic activation of protein kinase A (PKA) in cardiac muscle targets the sarcolemma, sarcoplasmic reticulum, and contractile apparatus to increase contractile force and heart rate. In the thin filaments of the contractile apparatus, cardiac troponin I (cTnI) Ser22 and Ser23 in the cardiac-specific N-terminal peptide (NcTnI: residues 1 to 32) are the targets for PKA phosphorylation. Phosphorylation causes a 2-3 fold decrease of affinity of cTn for Ca associated with a higher rate of Ca dissociation from cTnC leading to a faster relaxation rate of the cardiac muscle (lusitropy).

View Article and Find Full Text PDF

Human calpain-3 and its structural plasticity: dissociation of a homohexamer into dimers on binding titin.

J Biol Chem

December 2024

Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada. Electronic address:

Calpain-3 is an intracellular Ca-dependent cysteine protease abundant in skeletal muscle. Loss-of-function mutations in its single-copy gene cause a dystrophy of the limb-girdle muscles. These mutations, of which there are over 500 in humans, are spread all along this 94-kDa multi-domain protein that includes three 40+-residue sequences (NS, IS1, and IS2).

View Article and Find Full Text PDF

Calmodulin enhances mTORC1 signaling by preventing TSC2-Rheb binding.

J Biol Chem

December 2024

Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Japan. Electronic address:

The mechanistic target of rapamycin complex 1 (mTORC1) functions as a master regulator of cell growth and proliferation. We previously demonstrated that intracellular calcium ion (Ca) concentration modulates the mTORC1 pathway via binding of the Ca sensor protein calmodulin (CaM) to tuberous sclerosis complex 2 (TSC2), a critical negative regulator of mTORC1. However, the precise molecular mechanism by which Ca/CaM modulates mTORC1 activity remains unclear.

View Article and Find Full Text PDF

Layer-specific anatomical and physiological features of the retina's neurovascular unit.

Curr Biol

December 2024

Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD 20814, USA. Electronic address:

The neurovascular unit (NVU), comprising vascular, glial, and neural elements, supports the energetic demands of neural computation, but this aspect of the retina's trilaminar vessel network is poorly understood. Only the innermost vessel layer-the superficial vascular plexus (SVP)-is associated with astrocytes, like brain capillaries, whereas radial Müller glia interact with vessels in the other layers. Using serial electron microscopic reconstructions from mouse and primate retina, we find that Müller processes cover capillaries in a tessellating pattern, mirroring the wrapping of brain capillaries by tiled astrocytic endfeet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!