β-Cell replacement therapy via islet transplantation is an effective treatment for diabetes mellitus, but its widespread use is severely limited by the shortage of donor organs. Because pancreatic stem/progenitor cells are abundantly available in the pancreas of these patients and in donor organs, the cells could become a useful target for β-cell replacement therapy. We previously established a mouse pancreatic stem cell line without genetic manipulation. In this study, we used the techniques to identify and isolate human pancreatic stem/progenitor cells. The cells from a duct-rich population were cultured in 23 kinds of culture media, based on media for mouse pancreatic stem cells or for human embryonic stem cells. The cells in serum-free media formed "cobblestone" morphologies, similar to a mouse pancreatic stem cell line. On the other hand, the cells in serum-containing medium and the medium for human embryonic stem cells formed "fibroblast-like" morphologies. The cells divided actively until day 30, and the population doubling level (PDL) was 6-10. However, the cells stopped dividing after 30 days in any culture conditions. During the cultures, the nucleus/cytoplasm (N/C) ratio decreased, suggesting that the cells entered senescence. Exendin-4 treatment and transduction of PDX-1 and NeuroD proteins by protein transduction technology into the cells induced insulin and pancreas-related gene expression. Although the duplications of these cells were limited, this approach could provide a potential new source of insulin-producing cells for transplantation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/096368910X509004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!