Background: Ethanol exposure during early life has been shown to permanently alter the circadian expression of clock regulatory genes and the beta-endorphin precursor proopiomelanocortin (POMC) gene in the hypothalamus. Ethanol also alters the stress- and immune-regulatory functions of beta-endorphin neurons in laboratory rodents. Our aim was to determine whether the circadian clock regulatory Per2 gene modulates the action of ethanol on beta-endorphin neurons in mice.
Methods: Per2 mutant (mPer2(Brdml)) and wild type (C57BL/6J) mice were used to determine the effect of Per2 mutation on ethanol-regulated beta-endorphin neuronal activity during neonatal period using an in vitro mediobasal hypothalamic (MBH) cell culture model and an in vivo milk formula feeding animal model. The beta-endorphin neuronal activity following acute and chronic ethanol treatments was evaluated by measuring the peptide released from cultured cells or peptide levels in the MBH tissues, using enzyme-linked immunosorbent assay (ELISA).
Results: Per2 mutant mice showed a higher basal level of beta-endorphin release from cultured MBH cells and a moderate increase in the peptide content in the MBH in comparison with control mice. However, unlike wild type mice, Per2 mutant mice showed no stimulatory or inhibitory beta-endorphin-secretory responses to acute and chronic ethanol challenges in vitro. Furthermore, Per2 mutant mice, but not wild type mice, failed to show the stimulatory and inhibitory responses of MBH beta-endorphin levels to acute and chronic ethanol challenges in vivo.
Conclusions: These results suggest for the first time that the Per2 gene may be critically involved in regulating beta-endorphin neuronal function. Furthermore, the data revealed an involvement of the Per2 gene in regulating beta-endorphin neuronal responses to ethanol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929285 | PMC |
http://dx.doi.org/10.1111/j.1530-0277.2010.01246.x | DOI Listing |
J Neuroinflammation
October 2024
The Endocrine Program, The State University of New Jersey, Rutgers, New Brunswick, NJ, USA.
Background: Microglia, a type of resident immune cells within the central nervous system, have been implicated in ethanol-activated neuronal death of the stress regulatory proopiomelanocortin (POMC) neuron-producing β-endorphin peptides in the hypothalamus in a postnatal rat model of fetal alcohol spectrum disorders. We determined if microglial extracellular vesicles (exosomes) are involved in the ethanol-induced neuronal death of the β-endorphin neuron via secreting elevated levels of the chemokine monocyte chemoattractant protein 1 (MCP1), a key regulator of neuroinflammation.
Methods: We employed an in vitro model, consisting of primary culture of hypothalamic microglia prepared from postnatal day 2 (PND2) rat hypothalami and treated with or without 50 mM ethanol for 24 h, and an in vivo animal model in which microglia were obtained from hypothalami of PND6 rats fed daily with 2.
Zhen Ci Yan Jiu
May 2024
Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, (, Nanjing University of Chinese Medicine, Nanjing 210023, China).
Objectives: To observe the effect of electroacupuncture (EA) at "Neiguan" (PC6) on pain response in mice injected with complete Freund's adjuvant (CFA) in the hind paw, so as to investigate the mechanism of orexin 1 receptor (OX1R) -endogenous cannabinoid 1 receptor (CB1R) pathway in acupuncture analgesia.
Methods: A total of 48 male C57BL/6 mice were used in the present study. In the first part of this study, 18 mice were randomized into control, model and EA groups, with 6 mice in each group.
Hormones (Athens)
September 2024
Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece.
Purpose: Corticotropin-releasing hormone (CRH) plays an important role in relief of pain by releasing analgesia-associated molecules in several inflammatory states. During inflammation, peripheral CRH acts on cells of the immune system to stimulate the local expression of proopiomelanocortin (POMC) and the production of β-endorphin, which in turn binds to opioid receptors on sensory neurons to produce antinociception. In the present study, we further investigated the role of endogenous CRH in inflammatory pain by determining the effects of Crh-deficiency on this process.
View Article and Find Full Text PDFMol Pain
May 2024
Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.
It has been widely recognized that electroacupuncture (EA) inducing the release of β-endorphin represents a crucial mechanism of EA analgesia. The arcuate nucleus (ARC) in the hypothalamus is a vital component of the endogenous opioid peptide system. Serving as an integration center, the periaqueductal gray (PAG) receives neural fiber projections from the frontal cortex, insular cortex, and ARC.
View Article and Find Full Text PDFExp Neurobiol
December 2023
Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea.
The μ-opioid receptor (MOR) is a class of opioid receptors characterized by a high affinity for β-endorphin and morphine. MOR is a G protein-coupled receptor (GPCR) that plays a role in reward and analgesic effects. While expression of MOR has been well established in neurons and microglia, astrocytic MOR expression has been less clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!